Skip to content

Latest commit

 

History

History
195 lines (147 loc) · 6.42 KB

0222.完全二叉树的节点个数.md

File metadata and controls

195 lines (147 loc) · 6.42 KB

222.完全二叉树的节点个数

题目地址:https://leetcode-cn.com/problems/count-complete-tree-nodes/

给出一个完全二叉树,求出该树的节点个数。

示例: 示例 1: 输入:root = [1,2,3,4,5,6] 输出:6

示例 2: 输入:root = [] 输出:0

示例 3: 输入:root = [1] 输出:1

提示:

  • 树中节点的数目范围是[0, 5 * 10^4]
  • 0 <= Node.val <= 5 * 10^4
  • 题目数据保证输入的树是 完全二叉树

思路

本篇给出按照普通二叉树的求法以及利用完全二叉树性质的求法。

普通二叉树

首先按照普通二叉树的逻辑来求。

这道题目的递归法和求二叉树的深度写法类似, 而迭代法,二叉树:层序遍历登场!遍历模板稍稍修改一下,记录遍历的节点数量就可以了。

递归遍历的顺序依然是后序(左右中)。

递归

如果对求二叉树深度还不熟悉的话,看这篇:二叉树:看看这些树的最大深度

  1. 确定递归函数的参数和返回值:参数就是传入树的根节点,返回就返回以该节点为根节点二叉树的节点数量,所以返回值为int类型。

代码如下:

int getNodesNum(TreeNode* cur) {
  1. 确定终止条件:如果为空节点的话,就返回0,表示节点数为0。

代码如下:

if (cur == NULL) return 0;
  1. 确定单层递归的逻辑:先求它的左子树的节点数量,再求的右子树的节点数量,最后取总和再加一 (加1是因为算上当前中间节点)就是目前节点为根节点的节点数量。

代码如下:

int leftNum = getNodesNum(cur->left);      // 左
int rightNum = getNodesNum(cur->right);    // 右
int treeNum = leftNum + rightNum + 1;      // 中
return treeNum;

所以整体C++代码如下:

// 版本一
class Solution {
private:
    int getNodesNum(TreeNode* cur) {
        if (cur == 0) return 0;
        int leftNum = getNodesNum(cur->left);      //
        int rightNum = getNodesNum(cur->right);    //
        int treeNum = leftNum + rightNum + 1;      //
        return treeNum;
    }
public:
    int countNodes(TreeNode* root) {
        return getNodesNum(root);
    }
};

代码精简之后C++代码如下:

// 版本二
class Solution {
public:
    int countNodes(TreeNode* root) {
        if (root == NULL) return 0;
        return 1 + countNodes(root->left) + countNodes(root->right);
    }
};

时间复杂度:O(n) 空间复杂度:O(logn),算上了递归系统栈占用的空间

网上基本都是这个精简的代码版本,其实不建议大家照着这个来写,代码确实精简,但隐藏了一些内容,连遍历的顺序都看不出来,所以初学者建议学习版本一的代码,稳稳的打基础

迭代法

如果对求二叉树层序遍历还不熟悉的话,看这篇:二叉树:层序遍历登场!

那么只要模板少做改动,加一个变量result,统计节点数量就可以了

class Solution {
public:
    int countNodes(TreeNode* root) {
        queue<TreeNode*> que;
        if (root != NULL) que.push(root);
        int result = 0;
        while (!que.empty()) {
            int size = que.size();
            for (int i = 0; i < size; i++) {
                TreeNode* node = que.front();
                que.pop();
                result++;   // 记录节点数量
                if (node->left) que.push(node->left);
                if (node->right) que.push(node->right);
            }
        }
        return result;
    }
};

时间复杂度:O(n) 空间复杂度:O(n)

完全二叉树

以上方法都是按照普通二叉树来做的,对于完全二叉树特性不了解的同学可以看这篇 关于二叉树,你该了解这些!,这篇详细介绍了各种二叉树的特性。

完全二叉树只有两种情况,情况一:就是满二叉树,情况二:最后一层叶子节点没有满。

对于情况一,可以直接用 2^树深度 - 1 来计算,注意这里根节点深度为1。

对于情况二,分别递归左孩子,和右孩子,递归到某一深度一定会有左孩子或者右孩子为满二叉树,然后依然可以按照情况1来计算。

完全二叉树(一)如图: 222.完全二叉树的节点个数

完全二叉树(二)如图: 222.完全二叉树的节点个数1

可以看出如果整个树不是满二叉树,就递归其左右孩子,直到遇到满二叉树为止,用公式计算这个子树(满二叉树)的节点数量。

C++代码如下:

class Solution {
public:
    int countNodes(TreeNode* root) {
        if (root == nullptr) return 0;
        TreeNode* left = root->left;
        TreeNode* right = root->right;
        int leftHeight = 0, rightHeight = 0; // 这里初始为0是有目的的,为了下面求指数方便
        while (left) {  // 求左子树深度
            left = left->left;
            leftHeight++;
        }
        while (right) { // 求右子树深度
            right = right->right;
            rightHeight++;
        }
        if (leftHeight == rightHeight) {
            return (2 << leftHeight) - 1; // 注意(2<<1) 相当于2^2,所以leftHeight初始为0
        }
        return countNodes(root->left) + countNodes(root->right) + 1;
    }
};

时间复杂度:O(logn * logn) 空间复杂度:O(logn)