forked from deezer/spleeter
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_eval.py
62 lines (52 loc) · 1.98 KB
/
test_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
#!/usr/bin/env python
# coding: utf8
""" Unit testing for Separator class. """
__email__ = "spleeter@deezer.com"
__author__ = "Deezer Research"
__license__ = "MIT License"
from os import makedirs
from os.path import join
from tempfile import TemporaryDirectory
import numpy as np
from spleeter.__main__ import evaluate
from spleeter.audio.adapter import AudioAdapter
res_4stems = {
"vocals": {"SDR": 3.25e-05, "SAR": -11.153575, "SIR": -1.3849, "ISR": 2.75e-05},
"drums": {"SDR": -0.079505, "SAR": -15.7073575, "SIR": -4.972755, "ISR": 0.0013575},
"bass": {"SDR": 2.5e-06, "SAR": -10.3520575, "SIR": -4.272325, "ISR": 2.5e-06},
"other": {"SDR": -1.359175, "SAR": -14.7076775, "SIR": -4.761505, "ISR": -0.01528},
}
def generate_fake_eval_dataset(path):
"""
Generate fake evaluation dataset
"""
aa = AudioAdapter.default()
n_songs = 2
fs = 44100
duration = 3
n_channels = 2
rng = np.random.RandomState(seed=0)
for song in range(n_songs):
song_path = join(path, "test", f"song{song}")
makedirs(song_path, exist_ok=True)
for instr in ["mixture", "vocals", "bass", "drums", "other"]:
filename = join(song_path, f"{instr}.wav")
data = rng.rand(duration * fs, n_channels) - 0.5
aa.save(filename, data, fs)
def test_evaluate():
with TemporaryDirectory() as dataset:
with TemporaryDirectory() as evaluation:
generate_fake_eval_dataset(dataset)
metrics = evaluate(
adapter="spleeter.audio.ffmpeg.FFMPEGProcessAudioAdapter",
output_path=evaluation,
params_filename="spleeter:4stems",
mus_dir=dataset,
mwf=False,
verbose=False,
)
for instrument, metric in metrics.items():
for m, value in metric.items():
assert np.allclose(
np.median(value), res_4stems[instrument][m], atol=1e-3
)