forked from deezer/spleeter
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_eval.py
88 lines (77 loc) · 2.34 KB
/
test_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
#!/usr/bin/env python
# coding: utf8
""" Unit testing for Separator class. """
__email__ = 'spleeter@deezer.com'
__author__ = 'Deezer Research'
__license__ = 'MIT License'
from os import makedirs
from os.path import join
from tempfile import TemporaryDirectory
import pytest
import numpy as np
from spleeter.__main__ import evaluate
from spleeter.audio.adapter import AudioAdapter
BACKENDS = ['tensorflow', 'librosa']
TEST_CONFIGURATIONS = {el: el for el in BACKENDS}
res_4stems = {
'vocals': {
'SDR': 3.25e-05,
'SAR': -11.153575,
'SIR': -1.3849,
'ISR': 2.75e-05
},
'drums': {
'SDR': -0.079505,
'SAR': -15.7073575,
'SIR': -4.972755,
'ISR': 0.0013575
},
'bass': {
'SDR': 2.5e-06,
'SAR': -10.3520575,
'SIR': -4.272325,
'ISR': 2.5e-06
},
'other': {
'SDR': -1.359175,
'SAR': -14.7076775,
'SIR': -4.761505,
'ISR': -0.01528
}
}
def generate_fake_eval_dataset(path):
"""
generate fake evaluation dataset
"""
aa = AudioAdapter.default()
n_songs = 2
fs = 44100
duration = 3
n_channels = 2
rng = np.random.RandomState(seed=0)
for song in range(n_songs):
song_path = join(path, 'test', f'song{song}')
makedirs(song_path, exist_ok=True)
for instr in ['mixture', 'vocals', 'bass', 'drums', 'other']:
filename = join(song_path, f'{instr}.wav')
data = rng.rand(duration*fs, n_channels)-0.5
aa.save(filename, data, fs)
@pytest.mark.parametrize('backend', TEST_CONFIGURATIONS)
def test_evaluate(backend):
with TemporaryDirectory() as dataset:
with TemporaryDirectory() as evaluation:
generate_fake_eval_dataset(dataset)
metrics = evaluate(
adapter='spleeter.audio.ffmpeg.FFMPEGProcessAudioAdapter',
output_path=evaluation,
stft_backend=backend,
params_filename='spleeter:4stems',
mus_dir=dataset,
mwf=False,
verbose=False)
for instrument, metric in metrics.items():
for m, value in metric.items():
assert np.allclose(
np.median(value),
res_4stems[instrument][m],
atol=1e-3)