|
| 1 | +using MatrixAlgebraKit |
| 2 | +using Test |
| 3 | +using TestExtras |
| 4 | +using StableRNGs |
| 5 | +using LinearAlgebra: LinearAlgebra, I, isposdef, Hermitian |
| 6 | +using MatrixAlgebraKit: PolarViaSVD |
| 7 | +using AMDGPU |
| 8 | + |
| 9 | +@testset "left_polar! for T = $T" for T in (Float32, Float64, ComplexF32, ComplexF64) |
| 10 | + rng = StableRNG(123) |
| 11 | + m = 54 |
| 12 | + @testset "size ($m, $n)" for n in (37, m) |
| 13 | + k = min(m, n) |
| 14 | + svd_algs = (ROCSOLVER_QRIteration(), ROCSOLVER_Jacobi()) |
| 15 | + @testset "algorithm $svd_alg" for svd_alg in svd_algs |
| 16 | + n < m && svd_alg isa ROCSOLVER_QRIteration && continue |
| 17 | + A = ROCArray(randn(rng, T, m, n)) |
| 18 | + alg = PolarViaSVD(svd_alg) |
| 19 | + W, P = left_polar(A; alg) |
| 20 | + @test W isa ROCMatrix{T} && size(W) == (m, n) |
| 21 | + @test P isa ROCMatrix{T} && size(P) == (n, n) |
| 22 | + @test W * P ≈ A |
| 23 | + @test isisometric(W) |
| 24 | + # work around extremely strict Julia criteria for Hermiticity |
| 25 | + @test ishermitian(P; rtol = MatrixAlgebraKit.defaulttol(P)) && isposdef(Hermitian(P)) |
| 26 | + |
| 27 | + Ac = similar(A) |
| 28 | + W2, P2 = @constinferred left_polar!(copy!(Ac, A), (W, P), alg) |
| 29 | + @test W2 === W |
| 30 | + @test P2 === P |
| 31 | + @test W * P ≈ A |
| 32 | + @test isisometric(W) |
| 33 | + # work around extremely strict Julia criteria for Hermiticity |
| 34 | + @test ishermitian(P; rtol = MatrixAlgebraKit.defaulttol(P)) && isposdef(Hermitian(P)) |
| 35 | + |
| 36 | + noP = similar(P, (0, 0)) |
| 37 | + W2, P2 = @constinferred left_polar!(copy!(Ac, A), (W, noP), alg) |
| 38 | + @test P2 === noP |
| 39 | + @test W2 === W |
| 40 | + @test isisometric(W) |
| 41 | + P = W' * A # compute P explicitly to verify W correctness |
| 42 | + @test ishermitian(P; rtol = MatrixAlgebraKit.defaulttol(P)) |
| 43 | + @test isposdef(Hermitian(project_hermitian!(P))) |
| 44 | + end |
| 45 | + end |
| 46 | +end |
| 47 | + |
| 48 | +@testset "right_polar! for T = $T" for T in (Float32, Float64, ComplexF32, ComplexF64) |
| 49 | + rng = StableRNG(123) |
| 50 | + n = 54 |
| 51 | + @testset "size ($m, $n)" for m in (37, n) |
| 52 | + k = min(m, n) |
| 53 | + svd_algs = (ROCSOLVER_QRIteration(), ROCSOLVER_Jacobi()) |
| 54 | + @testset "algorithm $svd_alg" for svd_alg in svd_algs |
| 55 | + n > m && svd_alg isa ROCSOLVER_QRIteration && continue |
| 56 | + A = ROCArray(randn(rng, T, m, n)) |
| 57 | + alg = PolarViaSVD(svd_alg) |
| 58 | + P, Wᴴ = right_polar(A; alg) |
| 59 | + @test Wᴴ isa ROCMatrix{T} && size(Wᴴ) == (m, n) |
| 60 | + @test P isa ROCMatrix{T} && size(P) == (m, m) |
| 61 | + @test P * Wᴴ ≈ A |
| 62 | + @test isisometric(Wᴴ; side = :right) |
| 63 | + # work around extremely strict Julia criteria for Hermiticity |
| 64 | + @test ishermitian(P; rtol = MatrixAlgebraKit.defaulttol(P)) && isposdef(Hermitian(P)) |
| 65 | + |
| 66 | + Ac = similar(A) |
| 67 | + P2, Wᴴ2 = @constinferred right_polar!(copy!(Ac, A), (P, Wᴴ), alg) |
| 68 | + @test P2 === P |
| 69 | + @test Wᴴ2 === Wᴴ |
| 70 | + @test P * Wᴴ ≈ A |
| 71 | + @test isisometric(Wᴴ; side = :right) |
| 72 | + # work around extremely strict Julia criteria for Hermiticity |
| 73 | + @test ishermitian(P; rtol = MatrixAlgebraKit.defaulttol(P)) && isposdef(Hermitian(P)) |
| 74 | + |
| 75 | + noP = similar(P, (0, 0)) |
| 76 | + P2, Wᴴ2 = @constinferred right_polar!(copy!(Ac, A), (noP, Wᴴ), alg) |
| 77 | + @test P2 === noP |
| 78 | + @test Wᴴ2 === Wᴴ |
| 79 | + @test isisometric(Wᴴ; side = :right) |
| 80 | + P = A * Wᴴ' # compute P explicitly to verify W correctness |
| 81 | + @test ishermitian(P; rtol = MatrixAlgebraKit.defaulttol(P)) |
| 82 | + @test isposdef(Hermitian(project_hermitian!(P))) |
| 83 | + end |
| 84 | + end |
| 85 | +end |
0 commit comments