forked from lanl/PYSEQM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbasics.py
executable file
·390 lines (363 loc) · 17.2 KB
/
basics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
import torch
from .seqm_functions.scf_loop import scf_loop
from .seqm_functions.energy import *
from .seqm_functions.parameters import params
from torch.autograd import grad
from .seqm_functions.constants import ev
import os
import time
"""
Semi-Emperical Quantum Mechanics: AM1/MNDO/PM3
"""
parameterlist={'AM1':['U_ss', 'U_pp', 'zeta_s', 'zeta_p','beta_s', 'beta_p',
'g_ss', 'g_sp', 'g_pp', 'g_p2', 'h_sp',
'alpha',
'Gaussian1_K', 'Gaussian2_K', 'Gaussian3_K','Gaussian4_K',
'Gaussian1_L', 'Gaussian2_L', 'Gaussian3_L','Gaussian4_L',
'Gaussian1_M', 'Gaussian2_M', 'Gaussian3_M','Gaussian4_M'
],
'MNDO':['U_ss', 'U_pp', 'zeta_s', 'zeta_p','beta_s', 'beta_p',
'g_ss', 'g_sp', 'g_pp', 'g_p2', 'h_sp', 'alpha'],
'PM3':['U_ss', 'U_pp', 'zeta_s', 'zeta_p','beta_s', 'beta_p',
'g_ss', 'g_sp', 'g_pp', 'g_p2', 'h_sp',
'alpha',
'Gaussian1_K', 'Gaussian2_K',
'Gaussian1_L', 'Gaussian2_L',
'Gaussian1_M', 'Gaussian2_M'
]}
class Parser(torch.nn.Module):
"""
parsing inputs from coordinates and types
"""
def __init__(self, seqm_parameters):
"""
Constructor
"""
super().__init__()
self.outercutoff = seqm_parameters['pair_outer_cutoff']
self.elements = seqm_parameters['elements']
def forward(self, constansts, species, coordinates, *args, **kwargs):
"""
constants : instance of Class Constants
species : atom types for atom in each molecules,
shape (nmol, molsize), dtype: torch.int64
coordinates : atom position, shape (nmol, molsize, 3)
charges: total charge for each molecule, shape (nmol,), 0 if None
"""
device = coordinates.device
dtype = coordinates.dtype
nmol, molsize = species.shape
nonblank = species>0
n_real_atoms = torch.sum(nonblank)
atom_index = torch.arange(nmol*molsize, device=device,dtype=torch.int64)
real_atoms = atom_index[nonblank.reshape(-1)>0]
inv_real_atoms = torch.zeros((nmol*molsize,), device=device,dtype=torch.int64)
inv_real_atoms[real_atoms] = torch.arange(n_real_atoms, device=device,dtype=torch.int64)
Z = species.reshape(-1)[real_atoms]
nHeavy = torch.sum(species>1,dim=1)
nHydro = torch.sum(species==1,dim=1)
tore=constansts.tore
n_charge = torch.sum(tore[species],dim=1).reshape(-1).type(torch.int64)
if 'charges' in kwargs and torch.is_tensor(kwargs['charges']):
n_charge -= kwargs['charges'].reshape(-1).type(torch.int64)
nocc = torch.div(n_charge, 2, rounding_mode='floor')
if ((n_charge%2)==1).any():
raise ValueError("Only closed shell system (with even number of electrons) are supported")
t1 = (torch.arange(molsize,dtype=torch.int64,device=device)*(molsize+1)).reshape((1,-1))
t2 = (torch.arange(nmol,dtype=torch.int64,device=device)*molsize**2).reshape((-1,1))
maskd = (t1+t2).reshape(-1)[real_atoms]
atom_molid = torch.arange(nmol, device=device,dtype=torch.int64).unsqueeze(1).expand(-1,molsize).reshape(-1)[nonblank.reshape(-1)>0]
nonblank_pairs = (nonblank.unsqueeze(1)*nonblank.unsqueeze(2)).reshape(-1)
pair_first = atom_index.reshape(nmol, molsize) \
.unsqueeze(2) \
.expand(nmol,molsize,molsize) \
.reshape(-1)
#
pair_second = atom_index.reshape(nmol, molsize) \
.unsqueeze(1) \
.expand(nmol,molsize,molsize) \
.reshape(-1)
#
paircoord_raw = (coordinates.unsqueeze(1)-coordinates.unsqueeze(2)).reshape(-1,3)
pairdist2_tmp = (paircoord_raw**2).sum(dim=1)
pairdist2 = torch.where(pairdist2_tmp==0.0, 1.0e-4, pairdist2_tmp)
pairdist_raw = torch.sqrt(pairdist2)
# pairdist_raw = torch.norm(paircoord_raw,dim=1)
close_pairs = pairdist_raw < self.outercutoff
pairs = (pair_first<pair_second) * nonblank_pairs * close_pairs
paircoord = paircoord_raw[pairs]
pairdist = pairdist_raw[pairs]
rij = pairdist*constansts.length_conversion_factor
idxi = inv_real_atoms[pair_first[pairs]]
idxj = inv_real_atoms[pair_second[pairs]]
ni = Z[idxi]
nj = Z[idxj]
xij = paircoord/pairdist.unsqueeze(1)
mask = real_atoms[idxi]*molsize+real_atoms[idxj]%molsize
pair_molid = atom_molid[idxi] # doesn't matter atom_molid[idxj]
# nmol, molsize : scalar
# nHeavy, nHydro, nocc : (nmol,)
# Z, maskd, atom_molid: (natoms, )
# mask, pair_molid, ni, nj, idxi, idxj, xij, rij ; (npairs, )
return nmol, molsize, \
nHeavy, nHydro, nocc, \
Z, maskd, atom_molid, \
mask, pair_molid, ni, nj, idxi, idxj, xij, rij
class Pack_Parameters(torch.nn.Module):
"""
pack the parameters, combine the learned parameters and the ones from mopac
"""
def __init__(self, seqm_parameters):
"""
elements : elements will be used
device : cpu, cuda etc
method : seqm method
learned : list for parameters will be provided and require grad, e.g. learned = ['U_ss']
filedir : mopac parameter files directory
"""
super().__init__()
self.elements = seqm_parameters['elements']
self.learned_list = seqm_parameters['learned']
self.method = seqm_parameters['method']
self.filedir = seqm_parameters['parameter_file_dir'] \
if 'parameter_file_dir' in seqm_parameters \
else os.path.abspath(os.path.dirname(__file__))+'/params/'
self.parameters = parameterlist[self.method]
self.required_list = []
for i in self.parameters:
if i not in self.learned_list:
self.required_list.append(i)
self.nrp = len(self.required_list)
self.p = params(method=self.method, elements=self.elements,root_dir=self.filedir,
parameters=self.required_list)
def forward(self, Z, learned_params=dict()):
"""
combine the learned_parames with other required parameters
"""
for i in range(self.nrp):
learned_params[self.required_list[i]] = self.p[Z,i] #.contiguous()
return learned_params
class Hamiltonian(torch.nn.Module):
"""
build the Hamiltonian
"""
def __init__(self, seqm_parameters):
"""
Constructor
"""
super().__init__()
#put eps and scf_backward_eps as torch.nn.Parameter such that it is saved with model and can
#be used to restart jobs
self.eps = torch.nn.Parameter(torch.as_tensor(seqm_parameters['scf_eps']), requires_grad=False)
self.sp2 = seqm_parameters['sp2']
self.scf_converger = seqm_parameters['scf_converger']
# whether return eigenvalues, eigenvectors, otherwise they are None
if 'eig' in seqm_parameters:
self.eig = seqm_parameters['eig']
else:
self.eig = False
if 'scf_backward' in seqm_parameters:
self.scf_backward = seqm_parameters['scf_backward']
else:
self.scf_backward = 0
if 'scf_backward_eps' not in seqm_parameters:
seqm_parameters['scf_backward_eps'] = 1.0e-2
self.scf_backward_eps = torch.nn.Parameter(torch.as_tensor(seqm_parameters['scf_backward_eps']), requires_grad=False)
# 0: ignore gradient on density matrix from Hellmann Feymann Theorem,
# 1: use recursive formula go back through scf loop
def forward(self, const, molsize, nHeavy, nHydro, nocc, Z, maskd, mask, atom_molid, pair_molid, idxi, idxj, ni,nj,xij,rij, parameters, P0=None):
"""
SCF loop
const : Constants instance
molsize : maximal number of atoms in each molecule
nHeavy : number of heavy atoms in each molecule, shape (nmol,) nmol: number of molecules in this batch
nHydro : number of hydrogen in each molecule, shape (nmol,)
nocc : number of occupied molecular orbitals, shape (nmol,)
maskd : diagonal block postions, shape (n_atoms,)
mask: off diagonal block positions, shape (n_pairs,)
idxi/idxj : atom indexes for first/second atom in each pair, shape (n_pairs,)
ni/nj : atom number for first/second atom in each pair, shape (n_pairs,)
xij : unit vector for each pair, from i to j, (Rj-Ri)/|Rj-Ri|
rij : distance for each pair, in atomic unit, shape (n_pairs,)
Z: atom number, shape (n_atoms,)
zetas/zetap : Zeta for s/p orbital for each atom, shape (n_atoms, )
uss, upp, gss, gsp, gpp, gp2, hsp: parameters for AM1/PM3/MNDO, shape (n_atoms,)
#
return F, e, P, Hcore
F : fock matrix, i.e. the Hamiltonian for the system, shape (nmol, molsize*4, molsize*4)
e : orbital energies, shape (nmol, molsize*4), 0 padding is used
P : Density matrix for closed shell system, shape (nmol, molsize*4, molsize*4)
Hcore : Hcore matrix, same shape as F
w : two electron two center integrals
v : eigenvectors of F
"""
beta = torch.cat((parameters['beta_s'].unsqueeze(1), parameters['beta_p'].unsqueeze(1)),dim=1)
if "Kbeta" in parameters:
Kbeta = parameters["Kbeta"]
else:
Kbeta = None
F, e, P, Hcore, w, charge, notconverged = scf_loop(const=const,
molsize=molsize,
nHeavy=nHeavy,
nHydro=nHydro,
nOccMO=nocc,
maskd=maskd,
mask=mask,
atom_molid=atom_molid,
pair_molid=pair_molid,
idxi=idxi,
idxj=idxj,
ni=ni,
nj=nj,
xij=xij,
rij=rij,
Z=Z,
zetas=parameters['zeta_s'],
zetap=parameters['zeta_p'],
uss=parameters['U_ss'],
upp=parameters['U_pp'],
gss=parameters['g_ss'],
gsp=parameters['g_sp'],
gpp=parameters['g_pp'],
gp2=parameters['g_p2'],
hsp=parameters['h_sp'],
beta=beta,
Kbeta=Kbeta,
eps = self.eps,
P=P0,
sp2=self.sp2,
scf_converger=self.scf_converger,
eig=self.eig,
scf_backward=self.scf_backward,
scf_backward_eps=self.scf_backward_eps)
#
return F, e, P, Hcore, w, charge, notconverged
class Energy(torch.nn.Module):
def __init__(self, seqm_parameters):
"""
Constructor
"""
super().__init__()
self.seqm_parameters =seqm_parameters
self.method = seqm_parameters['method']
self.parser = Parser(seqm_parameters)
self.packpar = Pack_Parameters(seqm_parameters)
self.hamiltonian = Hamiltonian(seqm_parameters)
self.Hf_flag = True
if "Hf_flag" in seqm_parameters:
self.Hf_flag = seqm_parameters["Hf_flag"]
# Hf_flag: true return Hf, false return Etot-Eiso
def forward(self, const, coordinates, species, learned_parameters=dict(), all_terms=False, P0=None, step=0, *args, **kwargs):
"""
get the energy terms
"""
nmol, molsize, \
nHeavy, nHydro, nocc, \
Z, maskd, atom_molid, \
mask, pair_molid, ni, nj, idxi, idxj, xij, rij = self.parser(const, species, coordinates, *args, **kwargs)
if callable(learned_parameters):
adict = learned_parameters(species, coordinates)
parameters = self.packpar(Z, learned_params = adict)
else:
parameters = self.packpar(Z, learned_params = learned_parameters)
F, e, P, Hcore, w, charge, notconverged = self.hamiltonian(const, molsize, \
nHeavy, nHydro, nocc, \
Z, maskd, \
mask, atom_molid, pair_molid, idxi, idxj, ni,nj,xij,rij, \
parameters, P0=P0)
#nuclear energy
alpha = parameters['alpha']
if self.method=='MNDO':
parnuc = (alpha,)
elif self.method=='AM1':
K = torch.stack((parameters['Gaussian1_K'],
parameters['Gaussian2_K'],
parameters['Gaussian3_K'],
parameters['Gaussian4_K']),dim=1)
#
L = torch.stack((parameters['Gaussian1_L'],
parameters['Gaussian2_L'],
parameters['Gaussian3_L'],
parameters['Gaussian4_L']),dim=1)
#
M = torch.stack((parameters['Gaussian1_M'],
parameters['Gaussian2_M'],
parameters['Gaussian3_M'],
parameters['Gaussian4_M']),dim=1)
#
parnuc = (alpha, K, L, M)
elif self.method=='PM3':
K = torch.stack((parameters['Gaussian1_K'],
parameters['Gaussian2_K']),dim=1)
#
L = torch.stack((parameters['Gaussian1_L'],
parameters['Gaussian2_L']),dim=1)
#
M = torch.stack((parameters['Gaussian1_M'],
parameters['Gaussian2_M']),dim=1)
#
parnuc = (alpha, K, L, M)
if 'g_ss_nuc' in parameters:
g = parameters['g_ss_nuc']
rho0a = 0.5*ev/g[idxi]
rho0b = 0.5*ev/g[idxj]
gam = ev/torch.sqrt(rij**2 + (rho0a+rho0b)**2)
else:
gam = w[...,0,0]
EnucAB = pair_nuclear_energy(const, nmol, ni, nj, idxi, idxj, rij, gam=gam, method=self.method, parameters=parnuc)
Eelec = elec_energy(P, F, Hcore)
if all_terms:
Etot, Enuc = total_energy(nmol, pair_molid,EnucAB, Eelec)
Eiso = elec_energy_isolated_atom(const, Z,
uss=parameters['U_ss'],
upp=parameters['U_pp'],
gss=parameters['g_ss'],
gpp=parameters['g_pp'],
gsp=parameters['g_sp'],
gp2=parameters['g_p2'],
hsp=parameters['h_sp'])
Hf, Eiso_sum = heat_formation(const, nmol,atom_molid, Z, Etot, Eiso, flag = self.Hf_flag)
return Hf, Etot, Eelec, Enuc, Eiso_sum, EnucAB, e, P, charge, notconverged
else:
#for computing force, Eelec.sum()+EnucAB.sum() and backward is enough
#index_add is used in total_energy and heat_formation function
# P can be used as the initialization
return Eelec, EnucAB, P, notconverged
class Force(torch.nn.Module):
"""
get force
"""
def __init__(self, seqm_parameters):
super().__init__()
self.energy = Energy(seqm_parameters)
if "2nd_grad" in seqm_parameters:
self.create_graph = seqm_parameters["2nd_grad"]
else:
self.create_graph = False
self.seqm_parameters = seqm_parameters
def forward(self, const, coordinates, species, learned_parameters=dict(), P0=None, step=0, *args, **kwargs):
coordinates.requires_grad_(True)
Hf, Etot, Eelec, Enuc, Eiso, EnucAB, e, P, charge, notconverged = \
self.energy(const, coordinates, species, \
learned_parameters=learned_parameters, all_terms=True, P0=P0, step=step, *args, **kwargs)
#L = Etot.sum()
L = Hf.sum()
if const.do_timing:
t0 = time.time()
#gv = [coordinates]
#gradients = grad(L, gv,create_graph=self.create_graph)
L.backward(create_graph=self.create_graph)
if const.do_timing:
if torch.cuda.is_available():
torch.cuda.synchronize()
t1 = time.time()
const.timing["Force"].append(t1-t0)
#force = -gradients[0]
if self.create_graph:
force = -coordinates.grad.clone()
with torch.no_grad():
coordinates.grad.zero_()
else:
force = -coordinates.grad.detach()
coordinates.grad.zero_()
return force, P, Etot, Hf, Eelec, Enuc, Eiso, EnucAB, e, charge, notconverged