@@ -142,7 +142,7 @@ column vectors.
142
142
The set of all $n$-vectors is denoted by $\mathbb R^n$.
143
143
144
144
``` {prf:example}
145
- :label: ex_dim
145
+ :label: le_ex_dim
146
146
147
147
* $\mathbb R^2$ is the plane --- the set of pairs $(x_1, x_2)$.
148
148
* $\mathbb R^3$ is 3 dimensional space --- the set of vectors $(x_1, x_2, x_3)$.
@@ -188,7 +188,7 @@ multiplication, which we now describe.
188
188
When we add two vectors, we add them element-by-element.
189
189
190
190
``` {prf:example}
191
- :label: ex_add
191
+ :label: le_ex_add
192
192
193
193
$$
194
194
\begin{bmatrix}
@@ -278,7 +278,7 @@ plt.show()
278
278
Scalar multiplication is an operation that multiplies a vector $x$ with a scalar elementwise.
279
279
280
280
``` {prf:example}
281
- :label: ex_mul
281
+ :label: le_ex_mul
282
282
283
283
$$
284
284
-2
@@ -436,7 +436,7 @@ matrices.
436
436
Scalar multiplication and addition are generalizations of the vector case:
437
437
438
438
``` {prf:example}
439
- :label: ex_asm
439
+ :label: le_ex_asm
440
440
441
441
$$
442
442
3
470
470
$$
471
471
472
472
``` {prf:example}
473
- :label: ex_ma
473
+ :label: le_ex_ma
474
474
475
475
Consider this example of matrix addition,
476
476
@@ -531,7 +531,7 @@ If $A$ is $n \times k$ and $B$ is $j \times m$, then to multiply $A$ and $B$
531
531
we require $k = j$, and the resulting matrix $A B$ is $n \times m$.
532
532
533
533
``` {prf:example}
534
- :label: ex_2dmul
534
+ :label: le_ex_2dmul
535
535
536
536
Here's an example of a $2 \times 2$ matrix multiplied by a $2 \times 1$ vector.
537
537
@@ -856,7 +856,7 @@ In matrix form, the system {eq}`la_se` becomes
856
856
```
857
857
858
858
``` {prf:example}
859
- :label: ex_gls
859
+ :label: le_ex_gls
860
860
For example, {eq}`n_eq_sys_la` has this form with
861
861
862
862
$$
0 commit comments