@@ -247,7 +247,7 @@ The following code block imports a subset of the dataset `SCF_plus` for 2016,
247247which is derived from the [ Survey of Consumer Finances] ( https://en.wikipedia.org/wiki/Survey_of_Consumer_Finances ) (SCF).
248248
249249``` {code-cell} ipython3
250- url = 'https://media.githubusercontent. com/media/ QuantEcon/high_dim_data/main/SCF_plus/SCF_plus_mini.csv'
250+ url = 'https://github. com/QuantEcon/high_dim_data/raw /main/SCF_plus/SCF_plus_mini.csv'
251251df = pd.read_csv(url)
252252df_income_wealth = df.dropna()
253253```
@@ -619,46 +619,11 @@ We will use US data from the {ref}`Survey of Consumer Finances<data:survey-consu
619619df_income_wealth.year.describe()
620620```
621621
622- This code can be used to compute this information over the full dataset.
622+ {download} ` This notebook <_static/lecture_specific/inequality/data.ipynb> ` can be used to compute this information over the full dataset.
623623
624624``` {code-cell} ipython3
625- :tags: [skip-execution, hide-input, hide-output]
626-
627- !pip install quantecon
628- import quantecon as qe
629-
630- varlist = ['n_wealth', # net wealth
631- 't_income', # total income
632- 'l_income'] # labor income
633-
634- df = df_income_wealth
635-
636- # create lists to store Gini for each inequality measure
637- results = {}
638-
639- for var in varlist:
640- # create lists to store Gini
641- gini_yr = []
642- for year in years:
643- # repeat the observations according to their weights
644- counts = list(round(df[df['year'] == year]['weights'] ))
645- y = df[df['year'] == year][var].repeat(counts)
646- y = np.asarray(y)
647-
648- rd.shuffle(y) # shuffle the sequence
649-
650- # calculate and store Gini
651- gini = qe.gini_coefficient(y)
652- gini_yr.append(gini)
653-
654- results[var] = gini_yr
655-
656- # Convert to DataFrame
657- results = pd.DataFrame(results, index=years)
658- ```
659-
660- ``` {code-cell} ipython3
661- ginis = results
625+ data_url = 'https://github.com/QuantEcon/lecture-python-intro/raw/main/lectures/_static/lecture_specific/inequality/usa-gini-nwealth-tincome-lincome.csv'
626+ ginis = pd.read_csv(data_url, index_col='year')
662627ginis.head(n=5)
663628```
664629
@@ -685,10 +650,6 @@ One possibility is that this change is mainly driven by technology.
685650
686651However, we will see below that not all advanced economies experienced similar growth of inequality.
687652
688-
689-
690-
691-
692653### Cross-country comparisons of income inequality
693654
694655Earlier in this lecture we used ` wbgapi ` to get Gini data across many countries
0 commit comments