This repository makes possible the usage of the TensorFlow C++ API from the outside of the TensorFlow source code folders and without the use of the Bazel build system.
This repository contains two CMake projects. The tensorflow_cc project downloads, builds and installs the TensorFlow C++ API into the operating system and the example project demonstrates its simple usage.
If you wish to start using this project right away, fetch a prebuilt image on Docker Hub!
Running the image on CPU:
docker run -it floopcz/tensorflow_cc:ubuntu /bin/bash
If you also want to utilize your NVIDIA GPU, install NVIDIA Docker and run:
docker run --runtime=nvidia -it floopcz/tensorflow_cc:ubuntu-cuda /bin/bash
The list of available images:
Image name | Description |
---|---|
floopcz/tensorflow_cc:ubuntu |
Ubuntu build of tensorflow_cc |
floopcz/tensorflow_cc:ubuntu-cuda |
Ubuntu build of tensorflow_cc + NVIDIA CUDA |
floopcz/tensorflow_cc:archlinux |
Arch Linux build of tensorflow_cc |
floopcz/tensorflow_cc:archlinux-cuda |
Arch Linux build of tensorflow_cc + NVIDIA CUDA |
To build one of the images yourself, e.g. ubuntu
, run:
docker build -t floopcz/tensorflow_cc:ubuntu -f Dockerfiles/ubuntu .
Install repository requirements:
sudo apt-get install cmake curl g++-7 git python3-dev python3-numpy sudo wget
In order to build the TensorFlow itself, the build procedure also requires Bazel:
curl -fsSL https://bazel.build/bazel-release.pub.gpg | gpg --dearmor > bazel.gpg
sudo mv bazel.gpg /etc/apt/trusted.gpg.d/
echo "deb [arch=amd64] https://storage.googleapis.com/bazel-apt stable jdk1.8" | sudo tee /etc/apt/sources.list.d/bazel.list
sudo apt-get update && sudo apt-get install bazel
If you require GPU support on Ubuntu, please also install NVIDIA CUDA Toolkit (>=11.1), NVIDIA drivers, cuDNN, and cuda-command-line-tools
package.
The build procedure will automatically detect CUDA if it is installed in /opt/cuda
or /usr/local/cuda
directories.
sudo pacman -S base-devel bazel cmake git python python-numpy wget
For GPU support on Arch, also install the following:
sudo pacman -S cuda cudnn nvidia
Warning: Newer versions of TensorFlow sometimes fail to build with the latest version of Bazel. You may wish to install an older version of Bazel (e.g., 3.1.0).
git clone https://github.com/FloopCZ/tensorflow_cc.git
cd tensorflow_cc
cd tensorflow_cc
mkdir build && cd build
cmake ..
make
sudo make install
Warning: Optimizations for Intel CPU generation >=ivybridge
are enabled by default. If you have a
processor that is older than ivybridge
generation, you may wish to run export CC_OPT_FLAGS="-march=native"
before the build. This command provides the best possible optimizations for your current CPU generation, but
it may cause the built library to be incompatible with older generations.
# cleanup bazel build directory
rm -rf ~/.cache
# remove the build folder
cd .. && rm -rf build
// example.cpp
#include <tensorflow/core/platform/env.h>
#include <tensorflow/core/public/session.h>
#include <iostream>
using namespace std;
using namespace tensorflow;
int main()
{
Session* session;
Status status = NewSession(SessionOptions(), &session);
if (!status.ok()) {
cout << status.ToString() << "\n";
return 1;
}
cout << "Session successfully created.\n";
}
# CMakeLists.txt
find_package(TensorflowCC REQUIRED)
add_executable(example example.cpp)
# Link the Tensorflow library.
target_link_libraries(example TensorflowCC::TensorflowCC)
# You may also link cuda if it is available.
# find_package(CUDA)
# if(CUDA_FOUND)
# target_link_libraries(example ${CUDA_LIBRARIES})
# endif()
mkdir build && cd build
cmake .. && make
./example
If you are still unsure, consult the Dockerfiles for Ubuntu and Arch Linux.