From 548c85768a0d0ce3a725e7f483fc61c1883ea2bb Mon Sep 17 00:00:00 2001 From: Jake Lishman Date: Tue, 22 Oct 2024 13:09:20 +0100 Subject: [PATCH] Add base representation of `SparseObservable` (#12671) * Add base representation of `SparseObservable` This adds the base representation of `SparseObservable`, including the simple constructors from Python space and the ability to view the data buffers. This commit does not include the mathematical manipulations of the operators, nor some of the helper methods that will be used to manipulate the operators in the context of primitives execution. These will follow in subsequent patches. The design and implementation notes of `SparseObservable` are described in a Qiskit RFC that preceeded this patch series[^1], and it's best to consult that document for full details on the operator considerations. [^1]: https://github.com/Qiskit/RFCs/blob/7a74b08793475b7b0142d3a3f7142cabcfd33ab8/0021-sparse-observable.md * Rename `num_ops` to `num_terms` * Fix typos and :us: Co-authored-by: Julien Gacon * Add additional documentation * Fix tests of `num_terms` * Add more documentation * Fix error-message typo Co-authored-by: Julien Gacon --------- Co-authored-by: Julien Gacon --- Cargo.lock | 1 + crates/accelerate/Cargo.toml | 1 + crates/accelerate/src/lib.rs | 1 + crates/accelerate/src/sparse_observable.rs | 1709 +++++++++++++++++ crates/circuit/src/imports.rs | 2 + crates/pyext/src/lib.rs | 1 + qiskit/__init__.py | 1 + qiskit/quantum_info/__init__.py | 4 + .../sparse-observable-7de70dcdf6962a64.yaml | 32 + .../quantum_info/test_sparse_observable.py | 932 +++++++++ 10 files changed, 2684 insertions(+) create mode 100644 crates/accelerate/src/sparse_observable.rs create mode 100644 releasenotes/notes/sparse-observable-7de70dcdf6962a64.yaml create mode 100644 test/python/quantum_info/test_sparse_observable.py diff --git a/Cargo.lock b/Cargo.lock index b18bff37a8f0..c1a3229acfe6 100644 --- a/Cargo.lock +++ b/Cargo.lock @@ -1194,6 +1194,7 @@ version = "1.3.0" dependencies = [ "ahash 0.8.11", "approx 0.5.1", + "bytemuck", "faer", "faer-ext", "hashbrown 0.14.5", diff --git a/crates/accelerate/Cargo.toml b/crates/accelerate/Cargo.toml index 3bf09fd551ea..9f57288a64f6 100644 --- a/crates/accelerate/Cargo.toml +++ b/crates/accelerate/Cargo.toml @@ -26,6 +26,7 @@ qiskit-circuit.workspace = true thiserror.workspace = true ndarray_einsum_beta = "0.7" once_cell = "1.20.2" +bytemuck.workspace = true [dependencies.smallvec] workspace = true diff --git a/crates/accelerate/src/lib.rs b/crates/accelerate/src/lib.rs index 5afe8c3259a0..ed3b75d309d6 100644 --- a/crates/accelerate/src/lib.rs +++ b/crates/accelerate/src/lib.rs @@ -40,6 +40,7 @@ pub mod remove_diagonal_gates_before_measure; pub mod results; pub mod sabre; pub mod sampled_exp_val; +pub mod sparse_observable; pub mod sparse_pauli_op; pub mod split_2q_unitaries; pub mod star_prerouting; diff --git a/crates/accelerate/src/sparse_observable.rs b/crates/accelerate/src/sparse_observable.rs new file mode 100644 index 000000000000..e452f19b3235 --- /dev/null +++ b/crates/accelerate/src/sparse_observable.rs @@ -0,0 +1,1709 @@ +// This code is part of Qiskit. +// +// (C) Copyright IBM 2024 +// +// This code is licensed under the Apache License, Version 2.0. You may +// obtain a copy of this license in the LICENSE.txt file in the root directory +// of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. +// +// Any modifications or derivative works of this code must retain this +// copyright notice, and modified files need to carry a notice indicating +// that they have been altered from the originals. + +use std::collections::btree_map; + +use num_complex::Complex64; +use thiserror::Error; + +use numpy::{ + PyArray1, PyArrayDescr, PyArrayDescrMethods, PyArrayLike1, PyReadonlyArray1, PyReadonlyArray2, + PyUntypedArrayMethods, +}; + +use pyo3::exceptions::{PyTypeError, PyValueError}; +use pyo3::intern; +use pyo3::prelude::*; +use pyo3::sync::GILOnceCell; +use pyo3::types::{IntoPyDict, PyList, PyType}; + +use qiskit_circuit::imports::{ImportOnceCell, NUMPY_COPY_ONLY_IF_NEEDED}; +use qiskit_circuit::slice::{PySequenceIndex, SequenceIndex}; + +static PAULI_TYPE: ImportOnceCell = ImportOnceCell::new("qiskit.quantum_info", "Pauli"); +static SPARSE_PAULI_OP_TYPE: ImportOnceCell = + ImportOnceCell::new("qiskit.quantum_info", "SparsePauliOp"); + +/// Named handle to the alphabet of single-qubit terms. +/// +/// This is just the Rust-space representation. We make a separate Python-space `enum.IntEnum` to +/// represent the same information, since we enforce strongly typed interactions in Rust, including +/// not allowing the stored values to be outside the valid `BitTerm`s, but doing so in Python would +/// make it very difficult to use the class efficiently with Numpy array views. We attach this +/// sister class of `BitTerm` to `SparseObservable` as a scoped class. +/// +/// # Representation +/// +/// The `u8` representation and the exact numerical values of these are part of the public API. The +/// low two bits are the symplectic Pauli representation of the required measurement basis with Z in +/// the Lsb0 and X in the Lsb1 (e.g. X and its eigenstate projectors all have their two low bits as +/// `0b10`). The high two bits are `00` for the operator, `10` for the projector to the positive +/// eigenstate, and `01` for the projector to the negative eigenstate. +/// +/// The `0b00_00` representation thus ends up being the natural representation of the `I` operator, +/// but this is never stored, and is not named in the enumeration. +/// +/// This operator does not store phase terms of $-i$. `BitTerm::Y` has `(1, 1)` as its `(z, x)` +/// representation, and represents exactly the Pauli Y operator; any additional phase is stored only +/// in a corresponding coefficient. +/// +/// # Dev notes +/// +/// This type is required to be `u8`, but it's a subtype of `u8` because not all `u8` are valid +/// `BitTerm`s. For interop with Python space, we accept Numpy arrays of `u8` to represent this, +/// which we transmute into slices of `BitTerm`, after checking that all the values are correct (or +/// skipping the check if Python space promises that it upheld the checks). +/// +/// We deliberately _don't_ impl `numpy::Element` for `BitTerm` (which would let us accept and +/// return `PyArray1` at Python-space boundaries) so that it's clear when we're doing +/// the transmute, and we have to be explicit about the safety of that. +#[repr(u8)] +#[derive(Clone, Copy, Debug, Hash, PartialEq, Eq)] +pub enum BitTerm { + /// Pauli X operator. + X = 0b00_10, + /// Projector to the positive eigenstate of Pauli X. + Plus = 0b10_10, + /// Projector to the negative eigenstate of Pauli X. + Minus = 0b01_10, + /// Pauli Y operator. + Y = 0b00_11, + /// Projector to the positive eigenstate of Pauli Y. + Right = 0b10_11, + /// Projector to the negative eigenstate of Pauli Y. + Left = 0b01_11, + /// Pauli Z operator. + Z = 0b00_01, + /// Projector to the positive eigenstate of Pauli Z. + Zero = 0b10_01, + /// Projector to the negative eigenstate of Pauli Z. + One = 0b01_01, +} +impl From for u8 { + fn from(value: BitTerm) -> u8 { + value as u8 + } +} +unsafe impl ::bytemuck::CheckedBitPattern for BitTerm { + type Bits = u8; + + #[inline(always)] + fn is_valid_bit_pattern(bits: &Self::Bits) -> bool { + *bits <= 0b11_11 && (*bits & 0b11_00) < 0b11_00 && (*bits & 0b00_11) != 0 + } +} +unsafe impl ::bytemuck::NoUninit for BitTerm {} + +impl BitTerm { + /// Get the label of this `BitTerm` used in Python-space applications. This is a single-letter + /// string. + #[inline] + fn py_label(&self) -> &'static str { + match self { + Self::X => "X", + Self::Plus => "+", + Self::Minus => "-", + Self::Y => "Y", + Self::Right => "r", + Self::Left => "l", + Self::Z => "Z", + Self::Zero => "0", + Self::One => "1", + } + } + + /// Get the name of this `BitTerm`, which is how Python space refers to the integer constant. + #[inline] + fn py_name(&self) -> &'static str { + match self { + Self::X => "X", + Self::Plus => "PLUS", + Self::Minus => "MINUS", + Self::Y => "Y", + Self::Right => "RIGHT", + Self::Left => "LEFT", + Self::Z => "Z", + Self::Zero => "ZERO", + Self::One => "ONE", + } + } + + /// Attempt to convert a `u8` into `BitTerm`. + /// + /// Unlike the implementation of `TryFrom`, this allows `b'I'` as an alphabet letter, + /// returning `Ok(None)` for it. All other letters outside the alphabet return the complete + /// error condition. + #[inline] + fn try_from_u8(value: u8) -> Result, BitTermFromU8Error> { + match value { + b'+' => Ok(Some(BitTerm::Plus)), + b'-' => Ok(Some(BitTerm::Minus)), + b'0' => Ok(Some(BitTerm::Zero)), + b'1' => Ok(Some(BitTerm::One)), + b'I' => Ok(None), + b'X' => Ok(Some(BitTerm::X)), + b'Y' => Ok(Some(BitTerm::Y)), + b'Z' => Ok(Some(BitTerm::Z)), + b'l' => Ok(Some(BitTerm::Left)), + b'r' => Ok(Some(BitTerm::Right)), + _ => Err(BitTermFromU8Error(value)), + } + } +} + +static BIT_TERM_PY_ENUM: GILOnceCell> = GILOnceCell::new(); +static BIT_TERM_INTO_PY: GILOnceCell<[Option>; 16]> = GILOnceCell::new(); + +/// Construct the Python-space `IntEnum` that represents the same values as the Rust-spce `BitTerm`. +/// +/// We don't make `BitTerm` a direct `pyclass` because we want the behaviour of `IntEnum`, which +/// specifically also makes its variants subclasses of the Python `int` type; we use a type-safe +/// enum in Rust, but from Python space we expect people to (carefully) deal with the raw ints in +/// Numpy arrays for efficiency. +/// +/// The resulting class is attached to `SparseObservable` as a class attribute, and its +/// `__qualname__` is set to reflect this. +fn make_py_bit_term(py: Python) -> PyResult> { + let terms = [ + BitTerm::X, + BitTerm::Plus, + BitTerm::Minus, + BitTerm::Y, + BitTerm::Right, + BitTerm::Left, + BitTerm::Z, + BitTerm::Zero, + BitTerm::One, + ] + .into_iter() + .flat_map(|term| { + let mut out = vec![(term.py_name(), term as u8)]; + if term.py_name() != term.py_label() { + // Also ensure that the labels are created as aliases. These can't be (easily) accessed + // by attribute-getter (dot) syntax, but will work with the item-getter (square-bracket) + // syntax, or programmatically with `getattr`. + out.push((term.py_label(), term as u8)); + } + out + }) + .collect::>(); + let obj = py.import_bound("enum")?.getattr("IntEnum")?.call( + ("BitTerm", terms), + Some( + &[ + ("module", "qiskit.quantum_info"), + ("qualname", "SparseObservable.BitTerm"), + ] + .into_py_dict_bound(py), + ), + )?; + Ok(obj.downcast_into::()?.unbind()) +} + +// Return the relevant value from the Python-space sister enumeration. These are Python-space +// singletons and subclasses of Python `int`. We only use this for interaction with "high level" +// Python space; the efficient Numpy-like array paths use `u8` directly so Numpy can act on it +// efficiently. +impl IntoPy> for BitTerm { + fn into_py(self, py: Python) -> Py { + let terms = BIT_TERM_INTO_PY.get_or_init(py, || { + let py_enum = BIT_TERM_PY_ENUM + .get_or_try_init(py, || make_py_bit_term(py)) + .expect("creating a simple Python enum class should be infallible") + .bind(py); + ::std::array::from_fn(|val| { + ::bytemuck::checked::try_cast(val as u8) + .ok() + .map(|term: BitTerm| { + py_enum + .getattr(term.py_name()) + .expect("the created `BitTerm` enum should have matching attribute names to the terms") + .unbind() + }) + }) + }); + terms[self as usize] + .as_ref() + .expect("the lookup table initializer populated a 'Some' in all valid locations") + .clone_ref(py) + } +} +impl ToPyObject for BitTerm { + fn to_object(&self, py: Python) -> Py { + self.into_py(py) + } +} + +/// The error type for a failed conversion into `BitTerm`. +#[derive(Error, Debug)] +#[error("{0} is not a valid letter of the single-qubit alphabet")] +pub struct BitTermFromU8Error(u8); +impl From for PyErr { + fn from(value: BitTermFromU8Error) -> PyErr { + PyValueError::new_err(value.to_string()) + } +} + +// `BitTerm` allows safe `as` casting into `u8`. This is the reverse, which is fallible, because +// `BitTerm` is a value-wise subtype of `u8`. +impl ::std::convert::TryFrom for BitTerm { + type Error = BitTermFromU8Error; + + fn try_from(value: u8) -> Result { + ::bytemuck::checked::try_cast(value).map_err(|_| BitTermFromU8Error(value)) + } +} + +/// Error cases stemming from data coherence at the point of entry into `SparseObservable` from raw +/// arrays. +/// +/// These are generally associated with the Python-space `ValueError` because all of the +/// `TypeError`-related ones are statically forbidden (within Rust) by the language, and conversion +/// failures on entry to Rust from Python space will automatically raise `TypeError`. +#[derive(Error, Debug)] +pub enum CoherenceError { + #[error("`boundaries` ({boundaries}) must be one element longer than `coeffs` ({coeffs})")] + MismatchedTermCount { coeffs: usize, boundaries: usize }, + #[error("`bit_terms` ({bit_terms}) and `indices` ({indices}) must be the same length")] + MismatchedItemCount { bit_terms: usize, indices: usize }, + #[error("the first item of `boundaries` ({0}) must be 0")] + BadInitialBoundary(usize), + #[error("the last item of `boundaries` ({last}) must match the length of `bit_terms` and `indices` ({items})")] + BadFinalBoundary { last: usize, items: usize }, + #[error("all qubit indices must be less than the number of qubits")] + BitIndexTooHigh, + #[error("the values in `boundaries` include backwards slices")] + DecreasingBoundaries, + #[error("the values in `indices` are not term-wise increasing")] + UnsortedIndices, +} +impl From for PyErr { + fn from(value: CoherenceError) -> PyErr { + PyValueError::new_err(value.to_string()) + } +} + +/// An error related to processing of a string label (both dense and sparse). +#[derive(Error, Debug)] +pub enum LabelError { + #[error("label with length {label} cannot be added to a {num_qubits}-qubit operator")] + WrongLengthDense { num_qubits: u32, label: usize }, + #[error("label with length {label} does not match indices of length {indices}")] + WrongLengthIndices { label: usize, indices: usize }, + #[error("index {index} is out of range for a {num_qubits}-qubit operator")] + BadIndex { index: u32, num_qubits: u32 }, + #[error("index {index} is duplicated in a single specifier")] + DuplicateIndex { index: u32 }, + #[error("labels must only contain letters from the alphabet 'IXYZ+-rl01'")] + OutsideAlphabet, +} +impl From for PyErr { + fn from(value: LabelError) -> PyErr { + PyValueError::new_err(value.to_string()) + } +} + +/// An observable over Pauli bases that stores its data in a qubit-sparse format. +/// +/// Mathematics +/// =========== +/// +/// This observable represents a sum over strings of the Pauli operators and Pauli-eigenstate +/// projectors, with each term weighted by some complex number. That is, the full observable is +/// +/// .. math:: +/// +/// \text{\texttt{SparseObservable}} = \sum_i c_i \bigotimes_n A^{(n)}_i +/// +/// for complex numbers :math:`c_i` and single-qubit operators acting on qubit :math:`n` from a +/// restricted alphabet :math:`A^{(n)}_i`. The sum over :math:`i` is the sum of the individual +/// terms, and the tensor product produces the operator strings. +/// +/// The alphabet of allowed single-qubit operators that the :math:`A^{(n)}_i` are drawn from is the +/// Pauli operators and the Pauli-eigenstate projection operators. Explicitly, these are: +/// +/// .. _sparse-observable-alphabet: +/// .. table:: Alphabet of single-qubit terms used in :class:`SparseObservable` +/// +/// ======= ======================================= =============== =========================== +/// Label Operator Numeric value :class:`.BitTerm` attribute +/// ======= ======================================= =============== =========================== +/// ``"I"`` :math:`I` (identity) Not stored. Not stored. +/// +/// ``"X"`` :math:`X` (Pauli X) ``0b0010`` (2) :attr:`~.BitTerm.X` +/// +/// ``"Y"`` :math:`Y` (Pauli Y) ``0b0011`` (3) :attr:`~.BitTerm.Y` +/// +/// ``"Z"`` :math:`Z` (Pauli Z) ``0b0001`` (1) :attr:`~.BitTerm.Z` +/// +/// ``"+"`` :math:`\lvert+\rangle\langle+\rvert` ``0b1010`` (10) :attr:`~.BitTerm.PLUS` +/// (projector to positive eigenstate of X) +/// +/// ``"-"`` :math:`\lvert-\rangle\langle-\rvert` ``0b0110`` (6) :attr:`~.BitTerm.MINUS` +/// (projector to negative eigenstate of X) +/// +/// ``"r"`` :math:`\lvert r\rangle\langle r\rvert` ``0b1011`` (11) :attr:`~.BitTerm.RIGHT` +/// (projector to positive eigenstate of Y) +/// +/// ``"l"`` :math:`\lvert l\rangle\langle l\rvert` ``0b0111`` (7) :attr:`~.BitTerm.LEFT` +/// (projector to negative eigenstate of Y) +/// +/// ``"0"`` :math:`\lvert0\rangle\langle0\rvert` ``0b1001`` (9) :attr:`~.BitTerm.ZERO` +/// (projector to positive eigenstate of Z) +/// +/// ``"1"`` :math:`\lvert1\rangle\langle1\rvert` ``0b0101`` (5) :attr:`~.BitTerm.ONE` +/// (projector to negative eigenstate of Z) +/// ======= ======================================= =============== =========================== +/// +/// The allowed alphabet forms an overcomplete basis of the operator space. This means that there +/// is not a unique summation to represent a given observable. By comparison, +/// :class:`.SparsePauliOp` uses a precise basis of the operator space, so (after combining terms of +/// the same Pauli string, removing zeros, and sorting the terms to some canonical order) there is +/// only one representation of any operator. +/// +/// :class:`SparseObservable` uses its particular overcomplete basis with the aim of making +/// "efficiency of measurement" equivalent to "efficiency of representation". For example, the +/// observable :math:`{\lvert0\rangle\langle0\rvert}^{\otimes n}` can be efficiently measured on +/// hardware with simple :math:`Z` measurements, but can only be represented by +/// :class:`.SparsePauliOp` as :math:`{(I + Z)}^{\otimes n}/2^n`, which requires :math:`2^n` stored +/// terms. :class:`SparseObservable` requires only a single term to store this. +/// +/// The downside to this is that it is impractical to take an arbitrary matrix or +/// :class:`.SparsePauliOp` and find the *best* :class:`SparseObservable` representation. You +/// typically will want to construct a :class:`SparseObservable` directly, rather than trying to +/// decompose into one. +/// +/// +/// Representation +/// ============== +/// +/// The internal representation of a :class:`SparseObservable` stores only the non-identity qubit +/// operators. This makes it significantly more efficient to represent observables such as +/// :math:`\sum_{n\in \text{qubits}} Z^{(n)}`; :class:`SparseObservable` requires an amount of +/// memory linear in the total number of qubits, while :class:`.SparsePauliOp` scales quadratically. +/// +/// The terms are stored compressed, similar in spirit to the compressed sparse row format of sparse +/// matrices. In this analogy, the terms of the sum are the "rows", and the qubit terms are the +/// "columns", where an absent entry represents the identity rather than a zero. More explicitly, +/// the representation is made up of four contiguous arrays: +/// +/// .. _sparse-observable-arrays: +/// .. table:: Data arrays used to represent :class:`.SparseObservable` +/// +/// ================== =========== ============================================================= +/// Attribute Length Description +/// ================== =========== ============================================================= +/// :attr:`coeffs` :math:`t` The complex scalar multiplier for each term. +/// +/// :attr:`bit_terms` :math:`s` Each of the non-identity single-qubit terms for all of the +/// operators, in order. These correspond to the non-identity +/// :math:`A^{(n)}_i` in the sum description, where the entries +/// are stored in order of increasing :math:`i` first, and in +/// order of increasing :math:`n` within each term. +/// +/// :attr:`indices` :math:`s` The corresponding qubit (:math:`n`) for each of the operators +/// in :attr:`bit_terms`. :class:`SparseObservable` requires +/// that this list is term-wise sorted, and algorithms can rely +/// on this invariant being upheld. +/// +/// :attr:`boundaries` :math:`t+1` The indices that partition :attr:`bit_terms` and +/// :attr:`indices` into complete terms. For term number +/// :math:`i`, its complex coefficient is ``coeffs[i]``, and its +/// non-identity single-qubit operators and their corresponding +/// qubits are the slice ``boundaries[i] : boundaries[i+1]`` into +/// :attr:`bit_terms` and :attr:`indices` respectively. +/// :attr:`boundaries` always has an explicit 0 as its first +/// element. +/// ================== =========== ============================================================= +/// +/// The length parameter :math:`t` is the number of terms in the sum, and the parameter :math:`s` is +/// the total number of non-identity single-qubit terms. +/// +/// As illustrative examples: +/// +/// * in the case of a zero operator, :attr:`boundaries` is length 1 (a single 0) and all other +/// vectors are empty. +/// * in the case of a fully simplified identity operator, :attr:`boundaries` is ``[0, 0]``, +/// :attr:`coeffs` has a single entry, and :attr:`bit_terms` and :attr:`indices` are empty. +/// * for the operator :math:`Z_2 Z_0 - X_3 Y_1`, :attr:`boundaries` is ``[0, 2, 4]``, +/// :attr:`coeffs` is ``[1.0, -1.0]``, :attr:`bit_terms` is ``[BitTerm.Z, BitTerm.Z, BitTerm.Y, +/// BitTerm.X]`` and :attr:`indices` is ``[0, 2, 1, 3]``. The operator might act on more than +/// four qubits, depending on the :attr:`num_qubits` parameter. The :attr:`bit_terms` are integer +/// values, whose magic numbers can be accessed via the :class:`BitTerm` attribute class. Note +/// that the single-bit terms and indices are sorted into termwise sorted order. This is a +/// requirement of the class. +/// +/// These cases are not special, they're fully consistent with the rules and should not need special +/// handling. +/// +/// The scalar item of the :attr:`bit_terms` array is stored as a numeric byte. The numeric values +/// are related to the symplectic Pauli representation that :class:`.SparsePauliOp` uses, and are +/// accessible with named access by an enumeration: +/// +/// .. +/// This is documented manually here because the Python-space `Enum` is generated +/// programmatically from Rust - it'd be _more_ confusing to try and write a docstring somewhere +/// else in this source file. The use of `autoattribute` is because it pulls in the numeric +/// value. +/// +/// .. py:class:: SparseObservable.BitTerm +/// +/// An :class:`~enum.IntEnum` that provides named access to the numerical values used to +/// represent each of the single-qubit alphabet terms enumerated in +/// :ref:`sparse-observable-alphabet`. +/// +/// This class is attached to :class:`.SparseObservable`. Access it as +/// :class:`.SparseObservable.BitTerm`. If this is too much typing, and you are solely dealing +/// with :class:¬SparseObservable` objects and the :class:`BitTerm` name is not ambiguous, you +/// might want to shorten it as:: +/// +/// >>> ops = SparseObservable.BitTerm +/// >>> assert ops.X is SparseObservable.BitTerm.X +/// +/// You can access all the values of the enumeration by either their full all-capitals name, or +/// by their single-letter label. The single-letter labels are not generally valid Python +/// identifiers, so you must use indexing notation to access them:: +/// +/// >>> assert SparseObservable.BitTerm.ZERO is SparseObservable.BitTerm["0"] +/// +/// The numeric structure of these is that they are all four-bit values of which the low two +/// bits are the (phase-less) symplectic representation of the Pauli operator related to the +/// object, where the low bit denotes a contribution by :math:`Z` and the second lowest a +/// contribution by :math:`X`, while the upper two bits are ``00`` for a Pauli operator, ``01`` +/// for the negative-eigenstate projector, and ``10`` for the positive-eigenstate projector. +/// +/// .. autoattribute:: qiskit.quantum_info::SparseObservable.BitTerm.X +/// +/// The Pauli :math:`X` operator. Uses the single-letter label ``"X"``. +/// +/// .. autoattribute:: qiskit.quantum_info::SparseObservable.BitTerm.PLUS +/// +/// The projector to the positive eigenstate of the :math:`X` operator: +/// :math:`\lvert+\rangle\langle+\rvert`. Uses the single-letter label ``"+"``. +/// +/// .. autoattribute:: qiskit.quantum_info::SparseObservable.BitTerm.MINUS +/// +/// The projector to the negative eigenstate of the :math:`X` operator: +/// :math:`\lvert-\rangle\langle-\rvert`. Uses the single-letter label ``"-"``. +/// +/// .. autoattribute:: qiskit.quantum_info::SparseObservable.BitTerm.Y +/// +/// The Pauli :math:`Y` operator. Uses the single-letter label ``"Y"``. +/// +/// .. autoattribute:: qiskit.quantum_info::SparseObservable.BitTerm.RIGHT +/// +/// The projector to the positive eigenstate of the :math:`Y` operator: +/// :math:`\lvert r\rangle\langle r\rvert`. Uses the single-letter label ``"r"``. +/// +/// .. autoattribute:: qiskit.quantum_info::SparseObservable.BitTerm.LEFT +/// +/// The projector to the negative eigenstate of the :math:`Y` operator: +/// :math:`\lvert l\rangle\langle l\rvert`. Uses the single-letter label ``"l"``. +/// +/// .. autoattribute:: qiskit.quantum_info::SparseObservable.BitTerm.Z +/// +/// The Pauli :math:`Z` operator. Uses the single-letter label ``"Z"``. +/// +/// .. autoattribute:: qiskit.quantum_info::SparseObservable.BitTerm.ZERO +/// +/// The projector to the positive eigenstate of the :math:`Z` operator: +/// :math:`\lvert0\rangle\langle0\rvert`. Uses the single-letter label ``"0"``. +/// +/// .. autoattribute:: qiskit.quantum_info::SparseObservable.BitTerm.ONE +/// +/// The projector to the negative eigenstate of the :math:`Z` operator: +/// :math:`\lvert1\rangle\langle1\rvert`. Uses the single-letter label ``"1"``. +/// +/// Each of the array-like attributes behaves like a Python sequence. You can index and slice these +/// with standard :class:`list`-like semantics. Slicing an attribute returns a Numpy +/// :class:`~numpy.ndarray` containing a copy of the relevant data with the natural ``dtype`` of the +/// field; this lets you easily do mathematics on the results, like bitwise operations on +/// :attr:`bit_terms`. You can assign to indices or slices of each of the attributes, but beware +/// that you must uphold :ref:`the data coherence rules ` while doing +/// this. For example:: +/// +/// >>> obs = SparseObservable.from_list([("XZY", 1.5j), ("+1r", -0.5)]) +/// >>> assert isinstance(obs.coeffs[:], np.ndarray) +/// >>> # Reduce all single-qubit terms to the relevant Pauli operator, if they are a projector. +/// >>> obs.bit_terms[:] = obs.bit_terms[:] & 0b00_11 +/// >>> assert obs == SparseObservable.from_list([("XZY", 1.5j), ("XZY", -0.5)]) +/// +/// +/// Construction +/// ============ +/// +/// :class:`SparseObservable` defines several constructors. The default constructor will attempt to +/// delegate to one of the more specific constructors, based on the type of the input. You can +/// always use the specific constructors to have more control over the construction. +/// +/// .. _sparse-observable-convert-constructors: +/// .. table:: Construction from other objects +/// +/// ============================ ================================================================ +/// Method Summary +/// ============================ ================================================================ +/// :meth:`from_label` Convert a dense string label into a single-term +/// :class:`.SparseObservable`. +/// +/// :meth:`from_list` Sum a list of tuples of dense string labels and the associated +/// coefficients into an observable. +/// +/// :meth:`from_sparse_list` Sum a list of tuples of sparse string labels, the qubits they +/// apply to, and their coefficients into an observable. +/// +/// :meth:`from_pauli` Raise a single :class:`.Pauli` into a single-term +/// :class:`.SparseObservable`. +/// +/// :meth:`from_sparse_pauli_op` Raise a :class:`.SparsePauliOp` into a :class:`SparseObservable`. +/// +/// :meth:`from_raw_parts` Build the observable from :ref:`the raw data arrays +/// `. +/// ============================ ================================================================ +/// +/// .. py:function:: SparseObservable.__new__(data, /, num_qubits=None) +/// +/// The default constructor of :class:`SparseObservable`. +/// +/// This delegates to one of :ref:`the explicit conversion-constructor methods +/// `, based on the type of the ``data`` argument. If +/// ``num_qubits`` is supplied and constructor implied by the type of ``data`` does not accept a +/// number, the given integer must match the input. +/// +/// :param data: The data type of the input. This can be another :class:`SparseObservable`, in +/// which case the input is copied, a :class:`.Pauli` or :class:`.SparsePauliOp`, in which +/// case :meth:`from_pauli` or :meth:`from_sparse_pauli_op` are called as appropriate, or it +/// can be a list in a valid format for either :meth:`from_list` or +/// :meth:`from_sparse_list`. +/// :param int|None num_qubits: Optional number of qubits for the operator. For most data +/// inputs, this can be inferred and need not be passed. It is only necessary for empty +/// lists or the sparse-list format. If given unnecessarily, it must match the data input. +/// +/// In addition to the conversion-based constructors, there are also helper methods that construct +/// special forms of observables. +/// +/// .. table:: Construction of special observables +/// +/// ============================ ================================================================ +/// Method Summary +/// ============================ ================================================================ +/// :meth:`zero` The zero operator on a given number of qubits. +/// +/// :meth:`identity` The identity operator on a given number of qubits. +/// ============================ ================================================================ +#[pyclass(module = "qiskit.quantum_info")] +#[derive(Clone, Debug, PartialEq)] +pub struct SparseObservable { + /// The number of qubits the operator acts on. This is not inferable from any other shape or + /// values, since identities are not stored explicitly. + num_qubits: u32, + /// The coefficients of each abstract term in in the sum. This has as many elements as terms in + /// the sum. + coeffs: Vec, + /// A flat list of single-qubit terms. This is more naturally a list of lists, but is stored + /// flat for memory usage and locality reasons, with the sublists denoted by `boundaries.` + bit_terms: Vec, + /// A flat list of the qubit indices that the corresponding entries in `bit_terms` act on. This + /// list must always be term-wise sorted, where a term is a sublist as denoted by `boundaries`. + indices: Vec, + /// Indices that partition `bit_terms` and `indices` into sublists for each individual term in + /// the sum. `boundaries[0]..boundaries[1]` is the range of indices into `bit_terms` and + /// `indices` that correspond to the first term of the sum. All unspecified qubit indices are + /// implicitly the identity. This is one item longer than `coeffs`, since `boundaries[0]` is + /// always an explicit zero (for algorithmic ease). + boundaries: Vec, +} + +impl SparseObservable { + /// Create a new observable from the raw components that make it up. + /// + /// This checks the input values for data coherence on entry. If you are certain you have the + /// correct values, you can call `new_unchecked` instead. + pub fn new( + num_qubits: u32, + coeffs: Vec, + bit_terms: Vec, + indices: Vec, + boundaries: Vec, + ) -> Result { + if coeffs.len() + 1 != boundaries.len() { + return Err(CoherenceError::MismatchedTermCount { + coeffs: coeffs.len(), + boundaries: boundaries.len(), + }); + } + if bit_terms.len() != indices.len() { + return Err(CoherenceError::MismatchedItemCount { + bit_terms: bit_terms.len(), + indices: indices.len(), + }); + } + // We already checked that `boundaries` is at least length 1. + if *boundaries.first().unwrap() != 0 { + return Err(CoherenceError::BadInitialBoundary(boundaries[0])); + } + if *boundaries.last().unwrap() != indices.len() { + return Err(CoherenceError::BadFinalBoundary { + last: *boundaries.last().unwrap(), + items: indices.len(), + }); + } + for (&left, &right) in boundaries[..].iter().zip(&boundaries[1..]) { + if right < left { + return Err(CoherenceError::DecreasingBoundaries); + } + let indices = &indices[left..right]; + if !indices.is_empty() { + for (index_left, index_right) in indices[..].iter().zip(&indices[1..]) { + if index_left >= index_right { + return Err(CoherenceError::UnsortedIndices); + } + } + } + if indices.last().map(|&ix| ix >= num_qubits).unwrap_or(false) { + return Err(CoherenceError::BitIndexTooHigh); + } + } + // SAFETY: we've just done the coherence checks. + Ok(unsafe { Self::new_unchecked(num_qubits, coeffs, bit_terms, indices, boundaries) }) + } + + /// Create a new observable from the raw components without checking data coherence. + /// + /// # Safety + /// + /// It is up to the caller to ensure that the data-coherence requirements, as enumerated in the + /// struct-level documentation, have been upheld. + #[inline(always)] + pub unsafe fn new_unchecked( + num_qubits: u32, + coeffs: Vec, + bit_terms: Vec, + indices: Vec, + boundaries: Vec, + ) -> Self { + Self { + num_qubits, + coeffs, + bit_terms, + indices, + boundaries, + } + } + + /// Get an iterator over the individual terms of the operator. + pub fn iter(&'_ self) -> impl ExactSizeIterator> + '_ { + self.coeffs.iter().enumerate().map(|(i, coeff)| { + let start = self.boundaries[i]; + let end = self.boundaries[i + 1]; + SparseTermView { + coeff: *coeff, + bit_terms: &self.bit_terms[start..end], + indices: &self.indices[start..end], + } + }) + } + + /// Add the term implied by a dense string label onto this observable. + pub fn add_dense_label>( + &mut self, + label: L, + coeff: Complex64, + ) -> Result<(), LabelError> { + let label = label.as_ref(); + if label.len() != self.num_qubits() as usize { + return Err(LabelError::WrongLengthDense { + num_qubits: self.num_qubits(), + label: label.len(), + }); + } + // The only valid characters in the alphabet are ASCII, so if we see something other than + // ASCII, we're already in the failure path. + for (i, letter) in label.iter().rev().enumerate() { + match BitTerm::try_from_u8(*letter) { + Ok(Some(term)) => { + self.bit_terms.push(term); + self.indices.push(i as u32); + } + Ok(None) => (), + Err(_) => { + // Undo any modifications to ourselves so we stay in a consistent state. + let num_single_terms = self.boundaries[self.boundaries.len() - 1]; + self.bit_terms.truncate(num_single_terms); + self.indices.truncate(num_single_terms); + return Err(LabelError::OutsideAlphabet); + } + } + } + self.coeffs.push(coeff); + self.boundaries.push(self.bit_terms.len()); + Ok(()) + } +} + +#[pymethods] +impl SparseObservable { + #[pyo3(signature = (data, /, num_qubits=None))] + #[new] + fn py_new(data: Bound, num_qubits: Option) -> PyResult { + let py = data.py(); + let check_num_qubits = |data: &Bound| -> PyResult<()> { + let Some(num_qubits) = num_qubits else { + return Ok(()); + }; + let other_qubits = data.getattr(intern!(py, "num_qubits"))?.extract::()?; + if num_qubits == other_qubits { + return Ok(()); + } + Err(PyValueError::new_err(format!( + "explicitly given 'num_qubits' ({num_qubits}) does not match operator ({other_qubits})" + ))) + }; + + if data.is_instance(PAULI_TYPE.get_bound(py))? { + check_num_qubits(&data)?; + return Self::py_from_pauli(data); + } + if data.is_instance(SPARSE_PAULI_OP_TYPE.get_bound(py))? { + check_num_qubits(&data)?; + return Self::py_from_sparse_pauli_op(data); + } + if let Ok(label) = data.extract::() { + let num_qubits = num_qubits.unwrap_or(label.len() as u32); + if num_qubits as usize != label.len() { + return Err(PyValueError::new_err(format!( + "explicitly given 'num_qubits' ({}) does not match label ({})", + num_qubits, + label.len(), + ))); + } + return Self::py_from_label(&label).map_err(PyErr::from); + } + if let Ok(observable) = data.downcast::() { + check_num_qubits(&data)?; + return Ok(observable.borrow().clone()); + } + // The type of `vec` is inferred from the subsequent calls to `Self::py_from_list` or + // `Self::py_from_sparse_list` to be either the two-tuple or the three-tuple form during the + // `extract`. The empty list will pass either, but it means the same to both functions. + if let Ok(vec) = data.extract() { + return Self::py_from_list(vec, num_qubits); + } + if let Ok(vec) = data.extract() { + let Some(num_qubits) = num_qubits else { + return Err(PyValueError::new_err( + "if using the sparse-list form, 'num_qubits' must be provided", + )); + }; + return Self::py_from_sparse_list(vec, num_qubits).map_err(PyErr::from); + } + Err(PyTypeError::new_err(format!( + "unknown input format for 'SparseObservable': {}", + data.get_type().repr()?, + ))) + } + + /// The number of qubits the operator acts on. + /// + /// This is not inferable from any other shape or values, since identities are not stored + /// explicitly. + #[getter] + #[inline] + pub fn num_qubits(&self) -> u32 { + self.num_qubits + } + + /// The number of terms in the sum this operator is tracking. + #[getter] + #[inline] + pub fn num_terms(&self) -> usize { + self.coeffs.len() + } + + /// The coefficients of each abstract term in in the sum. This has as many elements as terms in + /// the sum. + #[getter] + fn get_coeffs(slf_: Py) -> ArrayView { + ArrayView { + base: slf_, + slot: ArraySlot::Coeffs, + } + } + + /// A flat list of single-qubit terms. This is more naturally a list of lists, but is stored + /// flat for memory usage and locality reasons, with the sublists denoted by `boundaries.` + #[getter] + fn get_bit_terms(slf_: Py) -> ArrayView { + ArrayView { + base: slf_, + slot: ArraySlot::BitTerms, + } + } + + /// A flat list of the qubit indices that the corresponding entries in :attr:`bit_terms` act on. + /// This list must always be term-wise sorted, where a term is a sublist as denoted by + /// :attr:`boundaries`. + /// + /// .. warning:: + /// + /// If writing to this attribute from Python space, you *must* ensure that you only write in + /// indices that are term-wise sorted. + #[getter] + fn get_indices(slf_: Py) -> ArrayView { + ArrayView { + base: slf_, + slot: ArraySlot::Indices, + } + } + + /// Indices that partition :attr:`bit_terms` and :attr:`indices` into sublists for each + /// individual term in the sum. ``boundaries[0] : boundaries[1]`` is the range of indices into + /// :attr:`bit_terms` and :attr:`indices` that correspond to the first term of the sum. All + /// unspecified qubit indices are implicitly the identity. This is one item longer than + /// :attr:`coeffs`, since ``boundaries[0]`` is always an explicit zero (for algorithmic ease). + #[getter] + fn get_boundaries(slf_: Py) -> ArrayView { + ArrayView { + base: slf_, + slot: ArraySlot::Boundaries, + } + } + + // The documentation for this is inlined into the class-level documentation of + // `SparseObservable`. + #[allow(non_snake_case)] + #[classattr] + fn BitTerm(py: Python) -> PyResult> { + BIT_TERM_PY_ENUM + .get_or_try_init(py, || make_py_bit_term(py)) + .map(|obj| obj.clone_ref(py)) + } + + /// Get the zero operator over the given number of qubits. + /// + /// The zero operator is the operator whose expectation value is zero for all quantum states. + /// It has no terms. It is the identity element for addition of two :class:`SparseObservable` + /// instances; anything added to the zero operator is equal to itself. + /// + /// If you want the projector onto the all zeros state, use:: + /// + /// >>> num_qubits = 10 + /// >>> all_zeros = SparseObservable.from_label("0" * num_qubits) + /// + /// Examples: + /// + /// Get the zero operator for 100 qubits:: + /// + /// >>> SparseObservable.zero(100) + /// + #[pyo3(signature = (/, num_qubits))] + #[staticmethod] + pub fn zero(num_qubits: u32) -> Self { + Self { + num_qubits, + coeffs: vec![], + bit_terms: vec![], + indices: vec![], + boundaries: vec![0], + } + } + + /// Get the identity operator over the given number of qubits. + /// + /// Examples: + /// + /// Get the identity operator for 100 qubits:: + /// + /// >>> SparseObservable.identity(100) + /// + #[pyo3(signature = (/, num_qubits))] + #[staticmethod] + pub fn identity(num_qubits: u32) -> Self { + Self { + num_qubits, + coeffs: vec![Complex64::new(1.0, 0.0)], + bit_terms: vec![], + indices: vec![], + boundaries: vec![0, 0], + } + } + + fn __repr__(&self) -> String { + let num_terms = format!( + "{} term{}", + self.num_terms(), + if self.num_terms() == 1 { "" } else { "s" } + ); + let qubits = format!( + "{} qubit{}", + self.num_qubits(), + if self.num_qubits() == 1 { "" } else { "s" } + ); + let terms = if self.num_terms() == 0 { + "0.0".to_owned() + } else { + self.iter() + .map(|term| { + let coeff = format!("{}", term.coeff).replace('i', "j"); + let paulis = term + .indices + .iter() + .zip(term.bit_terms) + .rev() + .map(|(i, op)| format!("{}_{}", op.py_label(), i)) + .collect::>() + .join(" "); + format!("({})({})", coeff, paulis) + }) + .collect::>() + .join(" + ") + }; + format!( + "", + num_terms, qubits, terms + ) + } + + fn __reduce__(&self, py: Python) -> PyResult> { + let bit_terms: &[u8] = ::bytemuck::cast_slice(&self.bit_terms); + Ok(( + py.get_type_bound::().getattr("from_raw_parts")?, + ( + self.num_qubits, + PyArray1::from_slice_bound(py, &self.coeffs), + PyArray1::from_slice_bound(py, bit_terms), + PyArray1::from_slice_bound(py, &self.indices), + PyArray1::from_slice_bound(py, &self.boundaries), + false, + ), + ) + .into_py(py)) + } + + fn __eq__(slf: Bound, other: Bound) -> bool { + if slf.is(&other) { + return true; + } + let Ok(other) = other.downcast_into::() else { + return false; + }; + slf.borrow().eq(&other.borrow()) + } + + // This doesn't actually have any interaction with Python space, but uses the `py_` prefix on + // its name to make it clear it's different to the Rust concept of `Copy`. + /// Get a copy of this observable. + /// + /// Examples: + /// + /// .. code-block:: python + /// + /// >>> obs = SparseObservable.from_list([("IXZ+lr01", 2.5), ("ZXI-rl10", 0.5j)]) + /// >>> assert obs == obs.copy() + /// >>> assert obs is not obs.copy() + #[pyo3(name = "copy")] + fn py_copy(&self) -> Self { + self.clone() + } + + /// Construct a single-term observable from a dense string label. + /// + /// The resulting operator will have a coefficient of 1. The label must be a sequence of the + /// alphabet ``'IXYZ+-rl01'``. The label is interpreted analogously to a bitstring. In other + /// words, the right-most letter is associated with qubit 0, and so on. This is the same as the + /// labels for :class:`.Pauli` and :class:`.SparsePauliOp`. + /// + /// Args: + /// label (str): the dense label. + /// + /// Examples: + /// + /// .. code-block:: python + /// + /// >>> SparseObservable.from_label("IIII+ZI") + /// + /// >>> label = "IYXZI" + /// >>> pauli = Pauli(label) + /// >>> assert SparseObservable.from_label(label) == SparseObservable.from_pauli(pauli) + /// + /// See also: + /// :meth:`from_list` + /// A generalization of this method that constructs a sum operator from multiple labels + /// and their corresponding coefficients. + #[staticmethod] + #[pyo3(name = "from_label", signature = (label, /))] + fn py_from_label(label: &str) -> Result { + let mut out = Self::zero(label.len() as u32); + out.add_dense_label(label, Complex64::new(1.0, 0.0))?; + Ok(out) + } + + /// Construct an observable from a list of dense labels and coefficients. + /// + /// This is analogous to :meth:`.SparsePauliOp.from_list`, except it uses + /// :ref:`the extended alphabet ` of :class:`.SparseObservable`. In + /// this dense form, you must supply all identities explicitly in each label. + /// + /// The label must be a sequence of the alphabet ``'IXYZ+-rl01'``. The label is interpreted + /// analogously to a bitstring. In other words, the right-most letter is associated with qubit + /// 0, and so on. This is the same as the labels for :class:`.Pauli` and + /// :class:`.SparsePauliOp`. + /// + /// Args: + /// iter (list[tuple[str, complex]]): Pairs of labels and their associated coefficients to + /// sum. The labels are interpreted the same way as in :meth:`from_label`. + /// num_qubits (int | None): It is not necessary to specify this if you are sure that + /// ``iter`` is not an empty sequence, since it can be inferred from the label lengths. + /// If ``iter`` may be empty, you must specify this argument to disambiguate how many + /// qubits the observable is for. If this is given and ``iter`` is not empty, the value + /// must match the label lengths. + /// + /// Examples: + /// + /// Construct an observable from a list of labels of the same length:: + /// + /// >>> SparseObservable.from_list([ + /// ... ("III++", 1.0), + /// ... ("II--I", 1.0j), + /// ... ("I++II", -0.5), + /// ... ("--III", -0.25j), + /// ... ]) + /// + /// + /// Use ``num_qubits`` to disambiguate potentially empty inputs:: + /// + /// >>> SparseObservable.from_list([], num_qubits=10) + /// + /// + /// This method is equivalent to calls to :meth:`from_sparse_list` with the explicit + /// qubit-arguments field set to decreasing integers:: + /// + /// >>> labels = ["XY+Z", "rl01", "-lXZ"] + /// >>> coeffs = [1.5j, 2.0, -0.5] + /// >>> from_list = SparseObservable.from_list(list(zip(labels, coeffs))) + /// >>> from_sparse_list = SparseObservable.from_sparse_list([ + /// ... (label, (3, 2, 1, 0), coeff) + /// ... for label, coeff in zip(labels, coeffs) + /// ... ]) + /// >>> assert from_list == from_sparse_list + /// + /// See also: + /// :meth:`from_label` + /// A similar constructor, but takes only a single label and always has its coefficient + /// set to ``1.0``. + /// + /// :meth:`from_sparse_list` + /// Construct the observable from a list of labels without explicit identities, but with + /// the qubits each single-qubit term applies to listed explicitly. + #[staticmethod] + #[pyo3(name = "from_list", signature = (iter, /, *, num_qubits=None))] + fn py_from_list(iter: Vec<(String, Complex64)>, num_qubits: Option) -> PyResult { + if iter.is_empty() && num_qubits.is_none() { + return Err(PyValueError::new_err( + "cannot construct an observable from an empty list without knowing `num_qubits`", + )); + } + let num_qubits = match num_qubits { + Some(num_qubits) => num_qubits, + None => iter[0].0.len() as u32, + }; + let mut out = Self { + num_qubits, + coeffs: Vec::with_capacity(iter.len()), + bit_terms: Vec::new(), + indices: Vec::new(), + boundaries: Vec::with_capacity(iter.len() + 1), + }; + out.boundaries.push(0); + for (label, coeff) in iter { + out.add_dense_label(&label, coeff)?; + } + Ok(out) + } + + /// Construct an observable from a list of labels, the qubits each item applies to, and the + /// coefficient of the whole term. + /// + /// This is analogous to :meth:`.SparsePauliOp.from_sparse_list`, except it uses + /// :ref:`the extended alphabet ` of :class:`.SparseObservable`. + /// + /// The "labels" and "indices" fields of the triples are associated by zipping them together. + /// For example, this means that a call to :meth:`from_list` can be converted to the form used + /// by this method by setting the "indices" field of each triple to ``(num_qubits-1, ..., 1, + /// 0)``. + /// + /// Args: + /// iter (list[tuple[str, Sequence[int], complex]]): triples of labels, the qubits + /// each single-qubit term applies to, and the coefficient of the entire term. + /// + /// num_qubits (int): the number of qubits in the operator. + /// + /// Examples: + /// + /// Construct a simple operator:: + /// + /// >>> SparseObservable.from_sparse_list( + /// ... [("ZX", (1, 4), 1.0), ("YY", (0, 3), 2j)], + /// ... num_qubits=5, + /// ... ) + /// + /// + /// Construct the identity observable (though really, just use :meth:`identity`):: + /// + /// >>> SparseObservable.from_sparse_list([("", (), 1.0)], num_qubits=100) + /// + /// + /// This method can replicate the behavior of :meth:`from_list`, if the qubit-arguments + /// field of the triple is set to decreasing integers:: + /// + /// >>> labels = ["XY+Z", "rl01", "-lXZ"] + /// >>> coeffs = [1.5j, 2.0, -0.5] + /// >>> from_list = SparseObservable.from_list(list(zip(labels, coeffs))) + /// >>> from_sparse_list = SparseObservable.from_sparse_list([ + /// ... (label, (3, 2, 1, 0), coeff) + /// ... for label, coeff in zip(labels, coeffs) + /// ... ]) + /// >>> assert from_list == from_sparse_list + #[staticmethod] + #[pyo3(name = "from_sparse_list", signature = (iter, /, num_qubits))] + fn py_from_sparse_list( + iter: Vec<(String, Vec, Complex64)>, + num_qubits: u32, + ) -> Result { + let coeffs = iter.iter().map(|(_, _, coeff)| *coeff).collect(); + let mut boundaries = Vec::with_capacity(iter.len() + 1); + boundaries.push(0); + let mut indices = Vec::new(); + let mut bit_terms = Vec::new(); + // Insertions to the `BTreeMap` keep it sorted by keys, so we use this to do the termwise + // sorting on-the-fly. + let mut sorted = btree_map::BTreeMap::new(); + for (label, qubits, _) in iter { + sorted.clear(); + let label: &[u8] = label.as_ref(); + if label.len() != qubits.len() { + return Err(LabelError::WrongLengthIndices { + label: label.len(), + indices: indices.len(), + }); + } + for (letter, index) in label.iter().zip(qubits) { + if index >= num_qubits { + return Err(LabelError::BadIndex { index, num_qubits }); + } + let btree_map::Entry::Vacant(entry) = sorted.entry(index) else { + return Err(LabelError::DuplicateIndex { index }); + }; + entry.insert( + BitTerm::try_from_u8(*letter).map_err(|_| LabelError::OutsideAlphabet)?, + ); + } + for (index, term) in sorted.iter() { + let Some(term) = term else { + continue; + }; + indices.push(*index); + bit_terms.push(*term); + } + boundaries.push(bit_terms.len()); + } + Ok(Self { + num_qubits, + coeffs, + indices, + bit_terms, + boundaries, + }) + } + + /// Construct a :class:`.SparseObservable` from a single :class:`.Pauli` instance. + /// + /// The output observable will have a single term, with a unitary coefficient dependent on the + /// phase. + /// + /// Args: + /// pauli (:class:`.Pauli`): the single Pauli to convert. + /// + /// Examples: + /// + /// .. code-block:: python + /// + /// >>> label = "IYXZI" + /// >>> pauli = Pauli(label) + /// >>> SparseObservable.from_pauli(pauli) + /// + /// >>> assert SparseObservable.from_label(label) == SparseObservable.from_pauli(pauli) + #[staticmethod] + #[pyo3(name = "from_pauli", signature = (pauli, /))] + fn py_from_pauli(pauli: Bound) -> PyResult { + let py = pauli.py(); + let num_qubits = pauli.getattr(intern!(py, "num_qubits"))?.extract::()?; + let z = pauli + .getattr(intern!(py, "z"))? + .extract::>()?; + let x = pauli + .getattr(intern!(py, "x"))? + .extract::>()?; + let mut bit_terms = Vec::new(); + let mut indices = Vec::new(); + let mut num_ys = 0; + for (i, (x, z)) in x.as_array().iter().zip(z.as_array().iter()).enumerate() { + // The only failure case possible here is the identity, because of how we're + // constructing the value to convert. + let Ok(term) = ::bytemuck::checked::try_cast((*x as u8) << 1 | (*z as u8)) else { + continue; + }; + num_ys += (term == BitTerm::Y) as isize; + indices.push(i as u32); + bit_terms.push(term); + } + let boundaries = vec![0, indices.len()]; + // The "empty" state of a `Pauli` represents the identity, which isn't our empty state + // (that's zero), so we're always going to have a coefficient. + let group_phase = pauli + // `Pauli`'s `_phase` is a Numpy array ... + .getattr(intern!(py, "_phase"))? + // ... that should have exactly 1 element ... + .call_method0(intern!(py, "item"))? + // ... which is some integral type. + .extract::()?; + let phase = match (group_phase - num_ys).rem_euclid(4) { + 0 => Complex64::new(1.0, 0.0), + 1 => Complex64::new(0.0, -1.0), + 2 => Complex64::new(-1.0, 0.0), + 3 => Complex64::new(0.0, 1.0), + _ => unreachable!("`x % 4` has only four values"), + }; + let coeffs = vec![phase]; + Ok(Self { + num_qubits, + coeffs, + bit_terms, + indices, + boundaries, + }) + } + + /// Construct a :class:`.SparseObservable` from a :class:`.SparsePauliOp` instance. + /// + /// This will be a largely direct translation of the :class:`.SparsePauliOp`; in particular, + /// there is no on-the-fly summing of like terms, nor any attempt to refactorize sums of Pauli + /// terms into equivalent projection operators. + /// + /// Args: + /// op (:class:`.SparsePauliOp`): the operator to convert. + /// + /// Examples: + /// + /// .. code-block:: python + /// + /// >>> spo = SparsePauliOp.from_list([("III", 1.0), ("IIZ", 0.5), ("IZI", 0.5)]) + /// >>> SparseObservable.from_sparse_pauli_op(spo) + /// + #[staticmethod] + #[pyo3(name = "from_sparse_pauli_op", signature = (op, /))] + fn py_from_sparse_pauli_op(op: Bound) -> PyResult { + let py = op.py(); + let pauli_list_ob = op.getattr(intern!(py, "paulis"))?; + let coeffs = op + .getattr(intern!(py, "coeffs"))? + .extract::>() + .map_err(|_| PyTypeError::new_err("only 'SparsePauliOp' with complex-typed coefficients can be converted to 'SparseObservable'"))? + .as_array() + .to_vec(); + let op_z = pauli_list_ob + .getattr(intern!(py, "z"))? + .extract::>()?; + let op_x = pauli_list_ob + .getattr(intern!(py, "x"))? + .extract::>()?; + // We don't extract the `phase`, because that's supposed to be 0 for all `SparsePauliOp` + // instances - they use the symplectic convention in the representation with any phase term + // absorbed into the coefficients (like us). + let [num_terms, num_qubits] = *op_z.shape() else { + unreachable!("shape is statically known to be 2D") + }; + if op_x.shape() != [num_terms, num_qubits] { + return Err(PyValueError::new_err(format!( + "'x' and 'z' have different shapes ({:?} and {:?})", + op_x.shape(), + op_z.shape() + ))); + } + if num_terms != coeffs.len() { + return Err(PyValueError::new_err(format!( + "'x' and 'z' have a different number of operators to 'coeffs' ({} and {})", + num_terms, + coeffs.len(), + ))); + } + + let mut bit_terms = Vec::new(); + let mut indices = Vec::new(); + let mut boundaries = Vec::with_capacity(num_terms + 1); + boundaries.push(0); + for (term_x, term_z) in op_x + .as_array() + .rows() + .into_iter() + .zip(op_z.as_array().rows()) + { + for (i, (x, z)) in term_x.iter().zip(term_z.iter()).enumerate() { + // The only failure case possible here is the identity, because of how we're + // constructing the value to convert. + let Ok(term) = ::bytemuck::checked::try_cast((*x as u8) << 1 | (*z as u8)) else { + continue; + }; + indices.push(i as u32); + bit_terms.push(term); + } + boundaries.push(indices.len()); + } + + Ok(Self { + num_qubits: num_qubits as u32, + coeffs, + bit_terms, + indices, + boundaries, + }) + } + + // SAFETY: this cannot invoke undefined behaviour if `check = true`, but if `check = false` then + // the `bit_terms` must all be valid `BitTerm` representations. + /// Construct a :class:`.SparseObservable` from raw Numpy arrays that match :ref:`the required + /// data representation described in the class-level documentation `. + /// + /// The data from each array is copied into fresh, growable Rust-space allocations. + /// + /// Args: + /// num_qubits: number of qubits in the observable. + /// coeffs: complex coefficients of each term of the observable. This should be a Numpy + /// array with dtype :attr:`~numpy.complex128`. + /// bit_terms: flattened list of the single-qubit terms comprising all complete terms. This + /// should be a Numpy array with dtype :attr:`~numpy.uint8` (which is compatible with + /// :class:`.BitTerm`). + /// indices: flattened term-wise sorted list of the qubits each single-qubit term corresponds + /// to. This should be a Numpy array with dtype :attr:`~numpy.uint32`. + /// boundaries: the indices that partition ``bit_terms`` and ``indices`` into terms. This + /// should be a Numpy array with dtype :attr:`~numpy.uintp`. + /// check: if ``True`` (the default), validate that the data satisfies all coherence + /// guarantees. If ``False``, no checks are done. + /// + /// .. warning:: + /// + /// If ``check=False``, the ``bit_terms`` absolutely *must* be all be valid values + /// of :class:`.SparseObservable.BitTerm`. If they are not, Rust-space undefined + /// behavior may occur, entirely invalidating the program execution. + /// + /// Examples: + /// + /// Construct a sum of :math:`Z` on each individual qubit:: + /// + /// >>> num_qubits = 100 + /// >>> terms = np.full((num_qubits,), SparseObservable.BitTerm.Z, dtype=np.uint8) + /// >>> indices = np.arange(num_qubits, dtype=np.uint32) + /// >>> coeffs = np.ones((num_qubits,), dtype=complex) + /// >>> boundaries = np.arange(num_qubits + 1, dtype=np.uintp) + /// >>> SparseObservable.from_raw_parts(num_qubits, coeffs, terms, indices, boundaries) + /// + #[deny(unsafe_op_in_unsafe_fn)] + #[staticmethod] + #[pyo3( + signature = (/, num_qubits, coeffs, bit_terms, indices, boundaries, check=true), + name = "from_raw_parts", + )] + unsafe fn py_from_raw_parts<'py>( + num_qubits: u32, + coeffs: PyArrayLike1<'py, Complex64>, + bit_terms: PyArrayLike1<'py, u8>, + indices: PyArrayLike1<'py, u32>, + boundaries: PyArrayLike1<'py, usize>, + check: bool, + ) -> PyResult { + let coeffs = coeffs.as_array().to_vec(); + let bit_terms = if check { + bit_terms + .as_array() + .into_iter() + .copied() + .map(BitTerm::try_from) + .collect::>()? + } else { + let bit_terms_as_u8 = bit_terms.as_array().to_vec(); + // SAFETY: the caller enforced that each `u8` is a valid `BitTerm`, and `BitTerm` is be + // represented by a `u8`. We can't use `bytemuck` because we're casting a `Vec`. + unsafe { ::std::mem::transmute::, Vec>(bit_terms_as_u8) } + }; + let indices = indices.as_array().to_vec(); + let boundaries = boundaries.as_array().to_vec(); + + if check { + Self::new(num_qubits, coeffs, bit_terms, indices, boundaries).map_err(PyErr::from) + } else { + // SAFETY: the caller promised they have upheld the coherence guarantees. + Ok(unsafe { Self::new_unchecked(num_qubits, coeffs, bit_terms, indices, boundaries) }) + } + } +} + +/// A view object onto a single term of a `SparseObservable`. +/// +/// The lengths of `bit_terms` and `indices` are guaranteed to be created equal, but might be zero +/// (in the case that the term is proportional to the identity). +#[derive(Clone, Copy, Debug)] +pub struct SparseTermView<'a> { + pub coeff: Complex64, + pub bit_terms: &'a [BitTerm], + pub indices: &'a [u32], +} + +/// Helper class of `ArrayView` that denotes the slot of the `SparseObservable` we're looking at. +#[derive(Clone, Copy, PartialEq, Eq)] +enum ArraySlot { + Coeffs, + BitTerms, + Indices, + Boundaries, +} + +/// Custom wrapper sequence class to get safe views onto the Rust-space data. We can't directly +/// expose Python-managed wrapped pointers without introducing some form of runtime exclusion on the +/// ability of `SparseObservable` to re-allocate in place; we can't leave dangling pointers for +/// Python space. +#[pyclass(frozen, sequence)] +struct ArrayView { + base: Py, + slot: ArraySlot, +} +#[pymethods] +impl ArrayView { + fn __repr__(&self, py: Python) -> PyResult { + let obs = self.base.borrow(py); + let data = match self.slot { + // Simple integers look the same in Rust-space debug as Python. + ArraySlot::Indices => format!("{:?}", obs.indices), + ArraySlot::Boundaries => format!("{:?}", obs.boundaries), + // Complexes don't have a nice repr in Rust, so just delegate the whole load to Python + // and convert back. + ArraySlot::Coeffs => PyList::new_bound(py, &obs.coeffs).repr()?.to_string(), + ArraySlot::BitTerms => format!( + "[{}]", + obs.bit_terms + .iter() + .map(BitTerm::py_label) + .collect::>() + .join(", ") + ), + }; + Ok(format!( + "", + match self.slot { + ArraySlot::Coeffs => "coeffs", + ArraySlot::BitTerms => "bit_terms", + ArraySlot::Indices => "indices", + ArraySlot::Boundaries => "boundaries", + }, + data, + )) + } + + fn __getitem__(&self, py: Python, index: PySequenceIndex) -> PyResult> { + // The slightly verbose generic setup here is to allow the type of a scalar return to be + // different to the type that gets put into the Numpy array, since the `BitTerm` enum can be + // a direct scalar, but for Numpy, we need it to be a raw `u8`. + fn get_from_slice( + py: Python, + slice: &[T], + index: PySequenceIndex, + ) -> PyResult> + where + T: ToPyObject + Copy + Into, + S: ::numpy::Element, + { + match index.with_len(slice.len())? { + SequenceIndex::Int(index) => Ok(slice[index].to_object(py)), + indices => Ok(PyArray1::from_iter_bound( + py, + indices.iter().map(|index| slice[index].into()), + ) + .into_any() + .unbind()), + } + } + + let obs = self.base.borrow(py); + match self.slot { + ArraySlot::Coeffs => get_from_slice::<_, Complex64>(py, &obs.coeffs, index), + ArraySlot::BitTerms => get_from_slice::<_, u8>(py, &obs.bit_terms, index), + ArraySlot::Indices => get_from_slice::<_, u32>(py, &obs.indices, index), + ArraySlot::Boundaries => get_from_slice::<_, usize>(py, &obs.boundaries, index), + } + } + + fn __setitem__(&self, index: PySequenceIndex, values: &Bound) -> PyResult<()> { + /// Set values of a slice according to the indexer, using `extract` to retrieve the + /// Rust-space object from the collection of Python-space values. + /// + /// This indirects the Python extraction through an intermediate type to marginally improve + /// the error messages for things like `BitTerm`, where Python-space extraction might fail + /// because the user supplied an invalid alphabet letter. + /// + /// This allows broadcasting a single item into many locations in a slice (like Numpy), but + /// otherwise requires that the index and values are the same length (unlike Python's + /// `list`) because that would change the length. + fn set_in_slice<'py, T, S>( + slice: &mut [T], + index: PySequenceIndex<'py>, + values: &Bound<'py, PyAny>, + ) -> PyResult<()> + where + T: Copy + TryFrom, + S: FromPyObject<'py>, + PyErr: From<>::Error>, + { + match index.with_len(slice.len())? { + SequenceIndex::Int(index) => { + slice[index] = values.extract::()?.try_into()?; + Ok(()) + } + indices => { + if let Ok(value) = values.extract::() { + let value = value.try_into()?; + for index in indices { + slice[index] = value; + } + } else { + let values = values + .iter()? + .map(|value| value?.extract::()?.try_into().map_err(PyErr::from)) + .collect::>>()?; + if indices.len() != values.len() { + return Err(PyValueError::new_err(format!( + "tried to set a slice of length {} with a sequence of length {}", + indices.len(), + values.len(), + ))); + } + for (index, value) in indices.into_iter().zip(values) { + slice[index] = value; + } + } + Ok(()) + } + } + } + + let mut obs = self.base.borrow_mut(values.py()); + match self.slot { + ArraySlot::Coeffs => set_in_slice::<_, Complex64>(&mut obs.coeffs, index, values), + ArraySlot::BitTerms => set_in_slice::(&mut obs.bit_terms, index, values), + ArraySlot::Indices => set_in_slice::<_, u32>(&mut obs.indices, index, values), + ArraySlot::Boundaries => set_in_slice::<_, usize>(&mut obs.boundaries, index, values), + } + } + + fn __len__(&self, py: Python) -> usize { + let obs = self.base.borrow(py); + match self.slot { + ArraySlot::Coeffs => obs.coeffs.len(), + ArraySlot::BitTerms => obs.bit_terms.len(), + ArraySlot::Indices => obs.indices.len(), + ArraySlot::Boundaries => obs.boundaries.len(), + } + } + + #[pyo3(signature = (/, dtype=None, copy=None))] + fn __array__<'py>( + &self, + py: Python<'py>, + dtype: Option<&Bound<'py, PyAny>>, + copy: Option, + ) -> PyResult> { + // This method always copies, so we don't leave dangling pointers lying around in Numpy + // arrays; it's not enough just to set the `base` of the Numpy array to the + // `SparseObservable`, since the `Vec` we're referring to might re-allocate and invalidate + // the pointer the Numpy array is wrapping. + if !copy.unwrap_or(true) { + return Err(PyValueError::new_err( + "cannot produce a safe view onto movable memory", + )); + } + let obs = self.base.borrow(py); + match self.slot { + ArraySlot::Coeffs => { + cast_array_type(py, PyArray1::from_slice_bound(py, &obs.coeffs), dtype) + } + ArraySlot::Indices => { + cast_array_type(py, PyArray1::from_slice_bound(py, &obs.indices), dtype) + } + ArraySlot::Boundaries => { + cast_array_type(py, PyArray1::from_slice_bound(py, &obs.boundaries), dtype) + } + ArraySlot::BitTerms => { + let bit_terms: &[u8] = ::bytemuck::cast_slice(&obs.bit_terms); + cast_array_type(py, PyArray1::from_slice_bound(py, bit_terms), dtype) + } + } + } +} + +/// Use the Numpy Python API to convert a `PyArray` into a dynamically chosen `dtype`, copying only +/// if required. +fn cast_array_type<'py, T>( + py: Python<'py>, + array: Bound<'py, PyArray1>, + dtype: Option<&Bound<'py, PyAny>>, +) -> PyResult> { + let base_dtype = array.dtype(); + let dtype = dtype + .map(|dtype| PyArrayDescr::new_bound(py, dtype)) + .unwrap_or_else(|| Ok(base_dtype.clone()))?; + if dtype.is_equiv_to(&base_dtype) { + return Ok(array.into_any()); + } + PyModule::import_bound(py, intern!(py, "numpy"))? + .getattr(intern!(py, "array"))? + .call( + (array,), + Some( + &[ + (intern!(py, "copy"), NUMPY_COPY_ONLY_IF_NEEDED.get_bound(py)), + (intern!(py, "dtype"), dtype.as_any()), + ] + .into_py_dict_bound(py), + ), + ) + .map(|obj| obj.into_any()) +} + +pub fn sparse_observable(m: &Bound) -> PyResult<()> { + m.add_class::()?; + Ok(()) +} + +#[cfg(test)] +mod test { + use super::*; + + #[test] + fn test_error_safe_add_dense_label() { + let base = SparseObservable::identity(5); + let mut modified = base.clone(); + assert!(matches!( + modified.add_dense_label("IIZ$X", Complex64::new(1.0, 0.0)), + Err(LabelError::OutsideAlphabet) + )); + // `modified` should have been left in a valid state. + assert_eq!(base, modified); + } +} diff --git a/crates/circuit/src/imports.rs b/crates/circuit/src/imports.rs index 538f819a1150..67ae9f85897f 100644 --- a/crates/circuit/src/imports.rs +++ b/crates/circuit/src/imports.rs @@ -122,6 +122,8 @@ pub static XX_DECOMPOSER: ImportOnceCell = ImportOnceCell::new("qiskit.synthesis.two_qubit.xx_decompose", "XXDecomposer"); pub static XX_EMBODIMENTS: ImportOnceCell = ImportOnceCell::new("qiskit.synthesis.two_qubit.xx_decompose", "XXEmbodiments"); +pub static NUMPY_COPY_ONLY_IF_NEEDED: ImportOnceCell = + ImportOnceCell::new("qiskit._numpy_compat", "COPY_ONLY_IF_NEEDED"); /// A mapping from the enum variant in crate::operations::StandardGate to the python /// module path and class name to import it. This is used to populate the conversion table diff --git a/crates/pyext/src/lib.rs b/crates/pyext/src/lib.rs index bc0d44a9dd44..560541455138 100644 --- a/crates/pyext/src/lib.rs +++ b/crates/pyext/src/lib.rs @@ -53,6 +53,7 @@ fn _accelerate(m: &Bound) -> PyResult<()> { add_submodule(m, ::qiskit_accelerate::results::results, "results")?; add_submodule(m, ::qiskit_accelerate::sabre::sabre, "sabre")?; add_submodule(m, ::qiskit_accelerate::sampled_exp_val::sampled_exp_val, "sampled_exp_val")?; + add_submodule(m, ::qiskit_accelerate::sparse_observable::sparse_observable, "sparse_observable")?; add_submodule(m, ::qiskit_accelerate::sparse_pauli_op::sparse_pauli_op, "sparse_pauli_op")?; add_submodule(m, ::qiskit_accelerate::split_2q_unitaries::split_2q_unitaries_mod, "split_2q_unitaries")?; add_submodule(m, ::qiskit_accelerate::star_prerouting::star_prerouting, "star_prerouting")?; diff --git a/qiskit/__init__.py b/qiskit/__init__.py index 26a72de2f722..63e5a2a48a47 100644 --- a/qiskit/__init__.py +++ b/qiskit/__init__.py @@ -79,6 +79,7 @@ sys.modules["qiskit._accelerate.results"] = _accelerate.results sys.modules["qiskit._accelerate.sabre"] = _accelerate.sabre sys.modules["qiskit._accelerate.sampled_exp_val"] = _accelerate.sampled_exp_val +sys.modules["qiskit._accelerate.sparse_observable"] = _accelerate.sparse_observable sys.modules["qiskit._accelerate.sparse_pauli_op"] = _accelerate.sparse_pauli_op sys.modules["qiskit._accelerate.star_prerouting"] = _accelerate.star_prerouting sys.modules["qiskit._accelerate.stochastic_swap"] = _accelerate.stochastic_swap diff --git a/qiskit/quantum_info/__init__.py b/qiskit/quantum_info/__init__.py index ba3299c9e100..2f5d707c8802 100644 --- a/qiskit/quantum_info/__init__.py +++ b/qiskit/quantum_info/__init__.py @@ -28,6 +28,7 @@ Pauli Clifford ScalarOp + SparseObservable SparsePauliOp CNOTDihedral PauliList @@ -113,6 +114,9 @@ """ from __future__ import annotations + +from qiskit._accelerate.sparse_observable import SparseObservable + from .analysis import hellinger_distance, hellinger_fidelity, Z2Symmetries from .operators import ( Clifford, diff --git a/releasenotes/notes/sparse-observable-7de70dcdf6962a64.yaml b/releasenotes/notes/sparse-observable-7de70dcdf6962a64.yaml new file mode 100644 index 000000000000..48617e6d1968 --- /dev/null +++ b/releasenotes/notes/sparse-observable-7de70dcdf6962a64.yaml @@ -0,0 +1,32 @@ +--- +features_quantum_info: + - | + A new observable class has been added. :class:`.SparseObservable` represents observables as a + sum of terms, similar to :class:`.SparsePauliOp`, but with two core differences: + + 1. Each complete term is stored as (effectively) a series of ``(qubit, bit_term)`` pairs, + without storing qubits that undergo the identity for that term. This significantly improves + the memory usage of observables such as the weighted sum of Paulis :math:`\sum_i c_i Z_i`. + + 2. The single-qubit term alphabet is overcomplete for the operator space; it can represent Pauli + operators (like :class:`.SparsePauliOp`), but also projectors onto the eigenstates of the + Pauli operators, like :math:`\lvert 0\rangle\langle 0\rangle`. Such projectors can be + measured on hardware equally as efficiently as their corresponding Pauli operator, but + :class:`.SparsePauliOp` would require an exponential number of terms to represent + :math:`{\lvert0\rangle\langle0\rvert}^{\otimes n}` over :math:`n` qubits, while + :class:`.SparseObservable` needs only a single term. + + You can construct and manipulate :class:`.SparseObservable` using an interface familiar to users + of :class:`.SparsePauliOp`:: + + from qiskit.quantum_info import SparseObservable + + obs = SparseObservable.from_sparse_list([ + ("XZY", (2, 1, 0), 1.5j), + ("+-", (100, 99), 0.5j), + ("01", (50, 49), 0.5), + ]) + + :class:`.SparseObservable` is not currently supported as an input format to the primitives + (:mod:`qiskit.primitives`), but we expect to expand these interfaces to include them in the + future. diff --git a/test/python/quantum_info/test_sparse_observable.py b/test/python/quantum_info/test_sparse_observable.py new file mode 100644 index 000000000000..656d60020bc7 --- /dev/null +++ b/test/python/quantum_info/test_sparse_observable.py @@ -0,0 +1,932 @@ +# This code is part of Qiskit. +# +# (C) Copyright IBM 2024 +# +# This code is licensed under the Apache License, Version 2.0. You may +# obtain a copy of this license in the LICENSE.txt file in the root directory +# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. +# +# Any modifications or derivative works of this code must retain this +# copyright notice, and modified files need to carry a notice indicating +# that they have been altered from the originals. + +# pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring + +import copy +import pickle +import unittest + +import ddt +import numpy as np + +from qiskit.circuit import Parameter +from qiskit.quantum_info import SparseObservable, SparsePauliOp, Pauli + +from test import QiskitTestCase # pylint: disable=wrong-import-order + + +@ddt.ddt +class TestSparseObservable(QiskitTestCase): + def test_default_constructor_pauli(self): + data = Pauli("IXYIZ") + self.assertEqual(SparseObservable(data), SparseObservable.from_pauli(data)) + self.assertEqual( + SparseObservable(data, num_qubits=data.num_qubits), SparseObservable.from_pauli(data) + ) + with self.assertRaisesRegex(ValueError, "explicitly given 'num_qubits'"): + SparseObservable(data, num_qubits=data.num_qubits + 1) + + with_phase = Pauli("-jIYYXY") + self.assertEqual(SparseObservable(with_phase), SparseObservable.from_pauli(with_phase)) + self.assertEqual( + SparseObservable(with_phase, num_qubits=data.num_qubits), + SparseObservable.from_pauli(with_phase), + ) + + self.assertEqual(SparseObservable(Pauli("")), SparseObservable.from_pauli(Pauli(""))) + + def test_default_constructor_sparse_pauli_op(self): + data = SparsePauliOp.from_list([("IIXIY", 1.0), ("XYYZI", -0.25), ("XYIYY", -0.25 + 0.75j)]) + self.assertEqual(SparseObservable(data), SparseObservable.from_sparse_pauli_op(data)) + self.assertEqual( + SparseObservable(data, num_qubits=data.num_qubits), + SparseObservable.from_sparse_pauli_op(data), + ) + with self.assertRaisesRegex(ValueError, "explicitly given 'num_qubits'"): + SparseObservable(data, num_qubits=data.num_qubits + 1) + with self.assertRaisesRegex(TypeError, "complex-typed coefficients"): + SparseObservable(SparsePauliOp(["XX"], [Parameter("x")])) + + def test_default_constructor_label(self): + data = "IIXI+-I01rlIYZ" + self.assertEqual(SparseObservable(data), SparseObservable.from_label(data)) + self.assertEqual( + SparseObservable(data, num_qubits=len(data)), SparseObservable.from_label(data) + ) + with self.assertRaisesRegex(ValueError, "explicitly given 'num_qubits'"): + SparseObservable(data, num_qubits=len(data) + 1) + + def test_default_constructor_list(self): + data = [("IXIIZ", 0.5), ("+I-II", 1.0 - 0.25j), ("IIrlI", -0.75)] + self.assertEqual(SparseObservable(data), SparseObservable.from_list(data)) + self.assertEqual(SparseObservable(data, num_qubits=5), SparseObservable.from_list(data)) + with self.assertRaisesRegex(ValueError, "label with length 5 cannot be added"): + SparseObservable(data, num_qubits=4) + with self.assertRaisesRegex(ValueError, "label with length 5 cannot be added"): + SparseObservable(data, num_qubits=6) + self.assertEqual( + SparseObservable([], num_qubits=5), SparseObservable.from_list([], num_qubits=5) + ) + + def test_default_constructor_sparse_list(self): + data = [("ZX", (0, 3), 0.5), ("-+", (2, 4), 1.0 - 0.25j), ("rl", (2, 1), -0.75)] + self.assertEqual( + SparseObservable(data, num_qubits=5), + SparseObservable.from_sparse_list(data, num_qubits=5), + ) + self.assertEqual( + SparseObservable(data, num_qubits=10), + SparseObservable.from_sparse_list(data, num_qubits=10), + ) + with self.assertRaisesRegex(ValueError, "'num_qubits' must be provided"): + SparseObservable(data) + self.assertEqual( + SparseObservable([], num_qubits=5), SparseObservable.from_sparse_list([], num_qubits=5) + ) + + def test_default_constructor_copy(self): + base = SparseObservable.from_list([("IXIZIY", 1.0), ("+-rl01", -1.0j)]) + copied = SparseObservable(base) + self.assertEqual(base, copied) + self.assertIsNot(base, copied) + + # Modifications to `copied` don't propagate back. + copied.coeffs[1] = -0.5j + self.assertNotEqual(base, copied) + + with self.assertRaisesRegex(ValueError, "explicitly given 'num_qubits'"): + SparseObservable(base, num_qubits=base.num_qubits + 1) + + def test_default_constructor_failed_inference(self): + with self.assertRaises(TypeError): + # Mixed dense/sparse list. + SparseObservable([("IIXIZ", 1.0), ("+-", (2, 3), -1.0)], num_qubits=5) + + def test_num_qubits(self): + self.assertEqual(SparseObservable.zero(0).num_qubits, 0) + self.assertEqual(SparseObservable.zero(10).num_qubits, 10) + + self.assertEqual(SparseObservable.identity(0).num_qubits, 0) + self.assertEqual(SparseObservable.identity(1_000_000).num_qubits, 1_000_000) + + def test_num_terms(self): + self.assertEqual(SparseObservable.zero(0).num_terms, 0) + self.assertEqual(SparseObservable.zero(10).num_terms, 0) + self.assertEqual(SparseObservable.identity(0).num_terms, 1) + self.assertEqual(SparseObservable.identity(1_000_000).num_terms, 1) + self.assertEqual( + SparseObservable.from_list([("IIIXIZ", 1.0), ("YY+-II", 0.5j)]).num_terms, 2 + ) + + def test_bit_term_enum(self): + # These are very explicit tests that effectively just duplicate magic numbers, but the point + # is that those magic numbers are required to be constant as their values are part of the + # public interface. + + self.assertEqual( + set(SparseObservable.BitTerm), + { + SparseObservable.BitTerm.X, + SparseObservable.BitTerm.Y, + SparseObservable.BitTerm.Z, + SparseObservable.BitTerm.PLUS, + SparseObservable.BitTerm.MINUS, + SparseObservable.BitTerm.RIGHT, + SparseObservable.BitTerm.LEFT, + SparseObservable.BitTerm.ZERO, + SparseObservable.BitTerm.ONE, + }, + ) + # All the enumeration items should also be integers. + self.assertIsInstance(SparseObservable.BitTerm.X, int) + values = { + "X": 0b00_10, + "Y": 0b00_11, + "Z": 0b00_01, + "PLUS": 0b10_10, + "MINUS": 0b01_10, + "RIGHT": 0b10_11, + "LEFT": 0b01_11, + "ZERO": 0b10_01, + "ONE": 0b01_01, + } + self.assertEqual({name: getattr(SparseObservable.BitTerm, name) for name in values}, values) + + # The single-character label aliases can be accessed with index notation. + labels = { + "X": SparseObservable.BitTerm.X, + "Y": SparseObservable.BitTerm.Y, + "Z": SparseObservable.BitTerm.Z, + "+": SparseObservable.BitTerm.PLUS, + "-": SparseObservable.BitTerm.MINUS, + "r": SparseObservable.BitTerm.RIGHT, + "l": SparseObservable.BitTerm.LEFT, + "0": SparseObservable.BitTerm.ZERO, + "1": SparseObservable.BitTerm.ONE, + } + self.assertEqual({label: SparseObservable.BitTerm[label] for label in labels}, labels) + + @ddt.data( + SparseObservable.zero(0), + SparseObservable.zero(10), + SparseObservable.identity(0), + SparseObservable.identity(1_000), + SparseObservable.from_label("IIXIZI"), + SparseObservable.from_list([("YIXZII", -0.25), ("01rl+-", 0.25 + 0.5j)]), + ) + def test_pickle(self, observable): + self.assertEqual(observable, copy.copy(observable)) + self.assertIsNot(observable, copy.copy(observable)) + self.assertEqual(observable, copy.deepcopy(observable)) + self.assertEqual(observable, pickle.loads(pickle.dumps(observable))) + + @ddt.data( + # This is every combination of (0, 1, many) for (terms, qubits, non-identites per term). + SparseObservable.zero(0), + SparseObservable.zero(1), + SparseObservable.zero(10), + SparseObservable.identity(0), + SparseObservable.identity(1), + SparseObservable.identity(1_000), + SparseObservable.from_label("IIXIZI"), + SparseObservable.from_label("X"), + SparseObservable.from_list([("YIXZII", -0.25), ("01rl+-", 0.25 + 0.5j)]), + ) + def test_repr(self, data): + # The purpose of this is just to test that the `repr` doesn't crash, rather than asserting + # that it has any particular form. + self.assertIsInstance(repr(data), str) + self.assertIn("SparseObservable", repr(data)) + + def test_from_raw_parts(self): + # Happiest path: exactly typed inputs. + num_qubits = 100 + terms = np.full((num_qubits,), SparseObservable.BitTerm.Z, dtype=np.uint8) + indices = np.arange(num_qubits, dtype=np.uint32) + coeffs = np.ones((num_qubits,), dtype=complex) + boundaries = np.arange(num_qubits + 1, dtype=np.uintp) + observable = SparseObservable.from_raw_parts(num_qubits, coeffs, terms, indices, boundaries) + self.assertEqual(observable.num_qubits, num_qubits) + np.testing.assert_equal(observable.bit_terms, terms) + np.testing.assert_equal(observable.indices, indices) + np.testing.assert_equal(observable.coeffs, coeffs) + np.testing.assert_equal(observable.boundaries, boundaries) + + self.assertEqual( + observable, + SparseObservable.from_raw_parts( + num_qubits, coeffs, terms, indices, boundaries, check=False + ), + ) + + # At least the initial implementation of `SparseObservable` requires `from_raw_parts` to be + # a copy constructor in order to allow it to be resized by Rust space. This is checking for + # that, but if the implementation changes, it could potentially be relaxed. + self.assertFalse(np.may_share_memory(observable.coeffs, coeffs)) + + # Conversion from array-likes, including mis-typed but compatible arrays. + observable = SparseObservable.from_raw_parts( + num_qubits, list(coeffs), tuple(terms), observable.indices, boundaries.astype(np.int16) + ) + self.assertEqual(observable.num_qubits, num_qubits) + np.testing.assert_equal(observable.bit_terms, terms) + np.testing.assert_equal(observable.indices, indices) + np.testing.assert_equal(observable.coeffs, coeffs) + np.testing.assert_equal(observable.boundaries, boundaries) + + # Construction of zero operator. + self.assertEqual( + SparseObservable.from_raw_parts(10, [], [], [], [0]), SparseObservable.zero(10) + ) + + # Construction of an operator with an intermediate identity term. For the initial + # constructor tests, it's hard to check anything more than the construction succeeded. + self.assertEqual( + SparseObservable.from_raw_parts( + 10, [1.0j, 0.5, 2.0], [1, 3, 2], [0, 1, 2], [0, 1, 1, 3] + ).num_terms, + # The three are [(1.0j)*(Z_1), 0.5, 2.0*(X_2 Y_1)] + 3, + ) + + def test_from_raw_parts_checks_coherence(self): + with self.assertRaisesRegex(ValueError, "not a valid letter"): + SparseObservable.from_raw_parts(2, [1.0j], [ord("$")], [0], [0, 1]) + with self.assertRaisesRegex(ValueError, r"boundaries.*must be one element longer"): + SparseObservable.from_raw_parts(2, [1.0j], [SparseObservable.BitTerm.Z], [0], [0]) + with self.assertRaisesRegex(ValueError, r"`bit_terms` \(1\) and `indices` \(0\)"): + SparseObservable.from_raw_parts(2, [1.0j], [SparseObservable.BitTerm.Z], [], [0, 1]) + with self.assertRaisesRegex(ValueError, r"`bit_terms` \(0\) and `indices` \(1\)"): + SparseObservable.from_raw_parts(2, [1.0j], [], [1], [0, 1]) + with self.assertRaisesRegex(ValueError, r"the first item of `boundaries` \(1\) must be 0"): + SparseObservable.from_raw_parts(2, [1.0j], [SparseObservable.BitTerm.Z], [0], [1, 1]) + with self.assertRaisesRegex(ValueError, r"the last item of `boundaries` \(2\)"): + SparseObservable.from_raw_parts(2, [1.0j], [1], [0], [0, 2]) + with self.assertRaisesRegex(ValueError, r"the last item of `boundaries` \(1\)"): + SparseObservable.from_raw_parts(2, [1.0j], [1, 2], [0, 1], [0, 1]) + with self.assertRaisesRegex(ValueError, r"all qubit indices must be less than the number"): + SparseObservable.from_raw_parts(4, [1.0j], [1, 2], [0, 4], [0, 2]) + with self.assertRaisesRegex(ValueError, r"all qubit indices must be less than the number"): + SparseObservable.from_raw_parts(4, [1.0j, -0.5j], [1, 2], [0, 4], [0, 1, 2]) + with self.assertRaisesRegex(ValueError, "the values in `boundaries` include backwards"): + SparseObservable.from_raw_parts( + 5, [1.0j, -0.5j, 2.0], [1, 2, 3, 2], [0, 1, 2, 3], [0, 2, 1, 4] + ) + with self.assertRaisesRegex( + ValueError, "the values in `indices` are not term-wise increasing" + ): + SparseObservable.from_raw_parts(4, [1.0j], [1, 2], [1, 0], [0, 2]) + + # There's no test of attempting to pass incoherent data and `check=False` because that + # permits undefined behaviour in Rust (it's unsafe), so all bets would be off. + + def test_from_label(self): + # The label is interpreted like a bitstring, with the right-most item associated with qubit + # 0, and increasing as we move to the left (like `Pauli`, and other bitstring conventions). + self.assertEqual( + # Ruler for counting terms: dcba9876543210 + SparseObservable.from_label("I+-II01IrlIXYZ"), + SparseObservable.from_raw_parts( + 14, + [1.0], + [ + SparseObservable.BitTerm.Z, + SparseObservable.BitTerm.Y, + SparseObservable.BitTerm.X, + SparseObservable.BitTerm.LEFT, + SparseObservable.BitTerm.RIGHT, + SparseObservable.BitTerm.ONE, + SparseObservable.BitTerm.ZERO, + SparseObservable.BitTerm.MINUS, + SparseObservable.BitTerm.PLUS, + ], + [0, 1, 2, 4, 5, 7, 8, 11, 12], + [0, 9], + ), + ) + + self.assertEqual(SparseObservable.from_label("I" * 10), SparseObservable.identity(10)) + + # The empty label case is a 0-qubit identity, since `from_label` always sets a coefficient + # of 1. + self.assertEqual(SparseObservable.from_label(""), SparseObservable.identity(0)) + + def test_from_label_failures(self): + with self.assertRaisesRegex(ValueError, "labels must only contain letters from"): + # Bad letters that are still ASCII. + SparseObservable.from_label("I+-$%I") + with self.assertRaisesRegex(ValueError, "labels must only contain letters from"): + # Unicode shenangigans. + SparseObservable.from_label("🐍") + + def test_from_list(self): + label = "IXYI+-0lr1ZZY" + self.assertEqual( + SparseObservable.from_list([(label, 1.0)]), SparseObservable.from_label(label) + ) + self.assertEqual( + SparseObservable.from_list([(label, 1.0)], num_qubits=len(label)), + SparseObservable.from_label(label), + ) + + self.assertEqual( + SparseObservable.from_list([("IIIXZI", 1.0j), ("+-IIII", -0.5)]), + SparseObservable.from_raw_parts( + 6, + [1.0j, -0.5], + [ + SparseObservable.BitTerm.Z, + SparseObservable.BitTerm.X, + SparseObservable.BitTerm.MINUS, + SparseObservable.BitTerm.PLUS, + ], + [1, 2, 4, 5], + [0, 2, 4], + ), + ) + + self.assertEqual(SparseObservable.from_list([], num_qubits=5), SparseObservable.zero(5)) + self.assertEqual(SparseObservable.from_list([], num_qubits=0), SparseObservable.zero(0)) + + def test_from_list_failures(self): + with self.assertRaisesRegex(ValueError, "labels must only contain letters from"): + # Bad letters that are still ASCII. + SparseObservable.from_list([("XZIIZY", 0.5), ("I+-$%I", 1.0j)]) + with self.assertRaisesRegex(ValueError, "labels must only contain letters from"): + # Unicode shenangigans. + SparseObservable.from_list([("🐍", 0.5)]) + with self.assertRaisesRegex(ValueError, "label with length 4 cannot be added"): + SparseObservable.from_list([("IIZ", 0.5), ("IIXI", 1.0j)]) + with self.assertRaisesRegex(ValueError, "label with length 2 cannot be added"): + SparseObservable.from_list([("IIZ", 0.5), ("II", 1.0j)]) + with self.assertRaisesRegex(ValueError, "label with length 3 cannot be added"): + SparseObservable.from_list([("IIZ", 0.5), ("IXI", 1.0j)], num_qubits=2) + with self.assertRaisesRegex(ValueError, "label with length 3 cannot be added"): + SparseObservable.from_list([("IIZ", 0.5), ("IXI", 1.0j)], num_qubits=4) + with self.assertRaisesRegex(ValueError, "cannot construct.*without knowing `num_qubits`"): + SparseObservable.from_list([]) + + def test_from_sparse_list(self): + self.assertEqual( + SparseObservable.from_sparse_list( + [ + ("XY", (0, 1), 0.5), + ("+-", (1, 3), -0.25j), + ("rl0", (0, 2, 4), 1.0j), + ], + num_qubits=5, + ), + SparseObservable.from_list([("IIIYX", 0.5), ("I-I+I", -0.25j), ("0IlIr", 1.0j)]), + ) + + # The indices should be allowed to be given in unsorted order, but they should be term-wise + # sorted in the output. + from_unsorted = SparseObservable.from_sparse_list( + [ + ("XYZ", (2, 1, 0), 1.5j), + ("+rl", (2, 0, 1), -0.5), + ], + num_qubits=3, + ) + self.assertEqual(from_unsorted, SparseObservable.from_list([("XYZ", 1.5j), ("+lr", -0.5)])) + np.testing.assert_equal( + from_unsorted.indices, np.array([0, 1, 2, 0, 1, 2], dtype=np.uint32) + ) + + # Explicit identities should still work, just be skipped over. + explicit_identity = SparseObservable.from_sparse_list( + [ + ("ZXI", (0, 1, 2), 1.0j), + ("XYIII", (0, 1, 2, 3, 8), -0.5j), + ], + num_qubits=10, + ) + self.assertEqual( + explicit_identity, + SparseObservable.from_sparse_list( + [("XZ", (1, 0), 1.0j), ("YX", (1, 0), -0.5j)], num_qubits=10 + ), + ) + np.testing.assert_equal(explicit_identity.indices, np.array([0, 1, 0, 1], dtype=np.uint32)) + + self.assertEqual( + SparseObservable.from_sparse_list([("", (), 1.0)], num_qubits=5), + SparseObservable.identity(5), + ) + self.assertEqual( + SparseObservable.from_sparse_list([("", (), 1.0)], num_qubits=0), + SparseObservable.identity(0), + ) + + self.assertEqual( + SparseObservable.from_sparse_list([], num_qubits=1_000_000), + SparseObservable.zero(1_000_000), + ) + self.assertEqual( + SparseObservable.from_sparse_list([], num_qubits=0), + SparseObservable.zero(0), + ) + + def test_from_sparse_list_failures(self): + with self.assertRaisesRegex(ValueError, "labels must only contain letters from"): + # Bad letters that are still ASCII. + SparseObservable.from_sparse_list( + [("XZZY", (5, 3, 1, 0), 0.5), ("+$", (2, 1), 1.0j)], num_qubits=8 + ) + # Unicode shenangigans. These two should fail with a `ValueError`, but the exact message + # isn't important. "\xff" is "ÿ", which is two bytes in UTF-8 (so has a length of 2 in + # Rust), but has a length of 1 in Python, so try with both a length-1 and length-2 index + # sequence, and both should still raise `ValueError`. + with self.assertRaises(ValueError): + SparseObservable.from_sparse_list([("\xff", (1,), 0.5)], num_qubits=5) + with self.assertRaises(ValueError): + SparseObservable.from_sparse_list([("\xff", (1, 2), 0.5)], num_qubits=5) + + with self.assertRaisesRegex(ValueError, "label with length 2 does not match indices"): + SparseObservable.from_sparse_list([("XZ", (0,), 1.0)], num_qubits=5) + with self.assertRaisesRegex(ValueError, "label with length 2 does not match indices"): + SparseObservable.from_sparse_list([("XZ", (0, 1, 2), 1.0)], num_qubits=5) + + with self.assertRaisesRegex(ValueError, "index 3 is out of range for a 3-qubit operator"): + SparseObservable.from_sparse_list([("XZY", (0, 1, 3), 1.0)], num_qubits=3) + with self.assertRaisesRegex(ValueError, "index 4 is out of range for a 3-qubit operator"): + SparseObservable.from_sparse_list([("XZY", (0, 1, 4), 1.0)], num_qubits=3) + with self.assertRaisesRegex(ValueError, "index 3 is out of range for a 3-qubit operator"): + # ... even if it's for an explicit identity. + SparseObservable.from_sparse_list([("+-I", (0, 1, 3), 1.0)], num_qubits=3) + + with self.assertRaisesRegex(ValueError, "index 3 is duplicated"): + SparseObservable.from_sparse_list([("XZ", (3, 3), 1.0)], num_qubits=5) + with self.assertRaisesRegex(ValueError, "index 3 is duplicated"): + SparseObservable.from_sparse_list([("XYZXZ", (3, 0, 1, 2, 3), 1.0)], num_qubits=5) + + def test_from_pauli(self): + # This function should be infallible provided `Pauli` doesn't change its interface and the + # user doesn't violate the typing. + + # Simple check that the labels are interpreted in the same order. + self.assertEqual( + SparseObservable.from_pauli(Pauli("IIXZI")), SparseObservable.from_label("IIXZI") + ) + + # `Pauli` accepts a phase in its label, which we can't (because of clashes with the other + # alphabet letters), and we should get that right. + self.assertEqual( + SparseObservable.from_pauli(Pauli("iIXZIX")), + SparseObservable.from_list([("IXZIX", 1.0j)]), + ) + self.assertEqual( + SparseObservable.from_pauli(Pauli("-iIXZIX")), + SparseObservable.from_list([("IXZIX", -1.0j)]), + ) + self.assertEqual( + SparseObservable.from_pauli(Pauli("-IXZIX")), + SparseObservable.from_list([("IXZIX", -1.0)]), + ) + + # `Pauli` has its internal phase convention for how it stores `Y`; we should get this right + # regardless of how many Ys are in the label, or if there's a phase. + paulis = {"IXYZ" * n: Pauli("IXYZ" * n) for n in range(1, 5)} + from_paulis, from_labels = zip( + *( + (SparseObservable.from_pauli(pauli), SparseObservable.from_label(label)) + for label, pauli in paulis.items() + ) + ) + self.assertEqual(from_paulis, from_labels) + + phased_paulis = {"IXYZ" * n: Pauli("j" + "IXYZ" * n) for n in range(1, 5)} + from_paulis, from_lists = zip( + *( + (SparseObservable.from_pauli(pauli), SparseObservable.from_list([(label, 1.0j)])) + for label, pauli in phased_paulis.items() + ) + ) + self.assertEqual(from_paulis, from_lists) + + self.assertEqual(SparseObservable.from_pauli(Pauli("III")), SparseObservable.identity(3)) + self.assertEqual(SparseObservable.from_pauli(Pauli("")), SparseObservable.identity(0)) + + def test_from_sparse_pauli_op(self): + self.assertEqual( + SparseObservable.from_sparse_pauli_op(SparsePauliOp.from_list([("IIIII", 1.0)])), + SparseObservable.identity(5), + ) + + data = [("ZXZXZ", 0.25), ("IYXZI", 1.0j), ("IYYZX", 0.5), ("YYYXI", -0.5), ("IYYYY", 2j)] + self.assertEqual( + SparseObservable.from_sparse_pauli_op(SparsePauliOp.from_list(data)), + SparseObservable.from_list(data), + ) + + # These two _should_ produce the same structure as `SparseObservable.zero(num_qubits)`, but + # because `SparsePauliOp` doesn't represent the zero operator "natively" - with an empty sum + # - they actually come out looking like `0.0` times the identity, which is less efficient + # but acceptable. + self.assertEqual( + SparseObservable.from_sparse_pauli_op(SparsePauliOp.from_list([], num_qubits=1)), + SparseObservable.from_list([("I", 0.0)]), + ) + self.assertEqual( + SparseObservable.from_sparse_pauli_op(SparsePauliOp.from_list([], num_qubits=0)), + SparseObservable.from_list([("", 0.0)]), + ) + + def test_from_sparse_pauli_op_failures(self): + parametric = SparsePauliOp.from_list([("IIXZ", Parameter("x"))], dtype=object) + with self.assertRaisesRegex(TypeError, "complex-typed coefficients"): + SparseObservable.from_sparse_pauli_op(parametric) + + def test_zero(self): + zero_5 = SparseObservable.zero(5) + self.assertEqual(zero_5.num_qubits, 5) + np.testing.assert_equal(zero_5.coeffs, np.array([], dtype=complex)) + np.testing.assert_equal(zero_5.bit_terms, np.array([], dtype=np.uint8)) + np.testing.assert_equal(zero_5.indices, np.array([], dtype=np.uint32)) + np.testing.assert_equal(zero_5.boundaries, np.array([0], dtype=np.uintp)) + + zero_0 = SparseObservable.zero(0) + self.assertEqual(zero_0.num_qubits, 0) + np.testing.assert_equal(zero_0.coeffs, np.array([], dtype=complex)) + np.testing.assert_equal(zero_0.bit_terms, np.array([], dtype=np.uint8)) + np.testing.assert_equal(zero_0.indices, np.array([], dtype=np.uint32)) + np.testing.assert_equal(zero_0.boundaries, np.array([0], dtype=np.uintp)) + + def test_identity(self): + id_5 = SparseObservable.identity(5) + self.assertEqual(id_5.num_qubits, 5) + np.testing.assert_equal(id_5.coeffs, np.array([1], dtype=complex)) + np.testing.assert_equal(id_5.bit_terms, np.array([], dtype=np.uint8)) + np.testing.assert_equal(id_5.indices, np.array([], dtype=np.uint32)) + np.testing.assert_equal(id_5.boundaries, np.array([0, 0], dtype=np.uintp)) + + id_0 = SparseObservable.identity(0) + self.assertEqual(id_0.num_qubits, 0) + np.testing.assert_equal(id_0.coeffs, np.array([1], dtype=complex)) + np.testing.assert_equal(id_0.bit_terms, np.array([], dtype=np.uint8)) + np.testing.assert_equal(id_0.indices, np.array([], dtype=np.uint32)) + np.testing.assert_equal(id_0.boundaries, np.array([0, 0], dtype=np.uintp)) + + @ddt.data( + SparseObservable.zero(0), + SparseObservable.zero(5), + SparseObservable.identity(0), + SparseObservable.identity(1_000_000), + SparseObservable.from_list([("+-rl01", -0.5), ("IXZYZI", 1.0j)]), + ) + def test_copy(self, obs): + self.assertEqual(obs, obs.copy()) + self.assertIsNot(obs, obs.copy()) + + def test_equality(self): + sparse_data = [("XZ", (1, 0), 0.5j), ("+lr", (3, 1, 0), -0.25)] + op = SparseObservable.from_sparse_list(sparse_data, num_qubits=5) + self.assertEqual(op, op.copy()) + # Take care that Rust space allows multiple views onto the same object. + self.assertEqual(op, op) + + # Comparison to some other object shouldn't fail. + self.assertNotEqual(op, None) + + # No costly automatic simplification (mathematically, these operators _are_ the same). + self.assertNotEqual( + SparseObservable.from_list([("+", 1.0), ("-", 1.0)]), SparseObservable.from_label("X") + ) + + # Difference in qubit count. + self.assertNotEqual( + op, SparseObservable.from_sparse_list(sparse_data, num_qubits=op.num_qubits + 1) + ) + self.assertNotEqual(SparseObservable.zero(2), SparseObservable.zero(3)) + self.assertNotEqual(SparseObservable.identity(2), SparseObservable.identity(3)) + + # Difference in coeffs. + self.assertNotEqual( + SparseObservable.from_list([("IIXZI", 1.0), ("+-rl0", -0.5j)]), + SparseObservable.from_list([("IIXZI", 1.0), ("+-rl0", 0.5j)]), + ) + self.assertNotEqual( + SparseObservable.from_list([("IIXZI", 1.0), ("+-rl0", -0.5j)]), + SparseObservable.from_list([("IIXZI", 1.0j), ("+-rl0", -0.5j)]), + ) + + # Difference in bit terms. + self.assertNotEqual( + SparseObservable.from_list([("IIXZI", 1.0), ("+-rl0", -0.5j)]), + SparseObservable.from_list([("IIYZI", 1.0), ("+-rl0", -0.5j)]), + ) + self.assertNotEqual( + SparseObservable.from_list([("IIXZI", 1.0), ("+-rl0", -0.5j)]), + SparseObservable.from_list([("IIXZI", 1.0), ("+-rl1", -0.5j)]), + ) + + # Difference in indices. + self.assertNotEqual( + SparseObservable.from_list([("IIXZI", 1.0), ("+Irl0", -0.5j)]), + SparseObservable.from_list([("IXIZI", 1.0), ("+Irl0", -0.5j)]), + ) + self.assertNotEqual( + SparseObservable.from_list([("IIXZI", 1.0), ("+Irl0", -0.5j)]), + SparseObservable.from_list([("IIXZI", 1.0), ("I+rl0", -0.5j)]), + ) + + # Difference in boundaries. + self.assertNotEqual( + SparseObservable.from_sparse_list( + [("XZ", (0, 1), 1.5), ("+-", (2, 3), -0.5j)], num_qubits=5 + ), + SparseObservable.from_sparse_list( + [("XZ+", (0, 1, 2), 1.5), ("-", (3,), -0.5j)], num_qubits=5 + ), + ) + + def test_write_into_attributes_scalar(self): + coeffs = SparseObservable.from_sparse_list( + [("XZ", (1, 0), 1.5j), ("+-", (3, 2), -1.5j)], num_qubits=8 + ) + coeffs.coeffs[0] = -2.0 + self.assertEqual( + coeffs, + SparseObservable.from_sparse_list( + [("XZ", (1, 0), -2.0), ("+-", (3, 2), -1.5j)], num_qubits=8 + ), + ) + coeffs.coeffs[1] = 1.5 + 0.25j + self.assertEqual( + coeffs, + SparseObservable.from_sparse_list( + [("XZ", (1, 0), -2.0), ("+-", (3, 2), 1.5 + 0.25j)], num_qubits=8 + ), + ) + + bit_terms = SparseObservable.from_sparse_list( + [("XZ", (0, 1), 1.5j), ("+-", (2, 3), -1.5j)], num_qubits=8 + ) + bit_terms.bit_terms[0] = SparseObservable.BitTerm.Y + bit_terms.bit_terms[3] = SparseObservable.BitTerm.LEFT + self.assertEqual( + bit_terms, + SparseObservable.from_sparse_list( + [("YZ", (0, 1), 1.5j), ("+l", (2, 3), -1.5j)], num_qubits=8 + ), + ) + + indices = SparseObservable.from_sparse_list( + [("XZ", (0, 1), 1.5j), ("+-", (2, 3), -1.5j)], num_qubits=8 + ) + # These two sets keep the observable in term-wise increasing order. We don't test what + # happens if somebody violates the Rust-space requirement to be term-wise increasing. + indices.indices[1] = 4 + indices.indices[3] = 7 + self.assertEqual( + indices, + SparseObservable.from_sparse_list( + [("XZ", (0, 4), 1.5j), ("+-", (2, 7), -1.5j)], num_qubits=8 + ), + ) + + boundaries = SparseObservable.from_sparse_list( + [("XZ", (0, 1), 1.5j), ("+-", (2, 3), -1.5j)], num_qubits=8 + ) + # Move a single-qubit term from the second summand into the first (the particular indices + # ensure we remain term-wise sorted). + boundaries.boundaries[1] += 1 + self.assertEqual( + boundaries, + SparseObservable.from_sparse_list( + [("XZ+", (0, 1, 2), 1.5j), ("-", (3,), -1.5j)], num_qubits=8 + ), + ) + + def test_write_into_attributes_broadcast(self): + coeffs = SparseObservable.from_list([("XIIZI", 1.5j), ("IIIl0", -0.25), ("1IIIY", 0.5)]) + coeffs.coeffs[:] = 1.5j + np.testing.assert_array_equal(coeffs.coeffs, [1.5j, 1.5j, 1.5j]) + coeffs.coeffs[1:] = 1.0j + np.testing.assert_array_equal(coeffs.coeffs, [1.5j, 1.0j, 1.0j]) + coeffs.coeffs[:2] = -0.5 + np.testing.assert_array_equal(coeffs.coeffs, [-0.5, -0.5, 1.0j]) + coeffs.coeffs[::2] = 1.5j + np.testing.assert_array_equal(coeffs.coeffs, [1.5j, -0.5, 1.5j]) + coeffs.coeffs[::-1] = -0.5j + np.testing.assert_array_equal(coeffs.coeffs, [-0.5j, -0.5j, -0.5j]) + + # It's hard to broadcast into `indices` without breaking data coherence; the broadcasting is + # more meant for fast modifications to `coeffs` and `bit_terms`. + indices = SparseObservable.from_list([("XIIZI", 1.5j), ("IIlI0", -0.25), ("1IIIY", 0.5)]) + indices.indices[::2] = 1 + self.assertEqual( + indices, SparseObservable.from_list([("XIIZI", 1.5j), ("IIl0I", -0.25), ("1IIYI", 0.5)]) + ) + + bit_terms = SparseObservable.from_list([("XIIZI", 1.5j), ("IIlI0", -0.25), ("1IIIY", 0.5)]) + bit_terms.bit_terms[::2] = SparseObservable.BitTerm.Z + self.assertEqual( + bit_terms, + SparseObservable.from_list([("XIIZI", 1.5j), ("IIlIZ", -0.25), ("1IIIZ", 0.5)]), + ) + bit_terms.bit_terms[3:1:-1] = SparseObservable.BitTerm.PLUS + self.assertEqual( + bit_terms, + SparseObservable.from_list([("XIIZI", 1.5j), ("II+I+", -0.25), ("1IIIZ", 0.5)]), + ) + bit_terms.bit_terms[bit_terms.boundaries[2] : bit_terms.boundaries[3]] = ( + SparseObservable.BitTerm.MINUS + ) + self.assertEqual( + bit_terms, + SparseObservable.from_list([("XIIZI", 1.5j), ("II+I+", -0.25), ("-III-", 0.5)]), + ) + + boundaries = SparseObservable.from_list([("IIIIZX", 1j), ("II+-II", -0.5), ("rlIIII", 0.5)]) + boundaries.boundaries[1:3] = 1 + self.assertEqual( + boundaries, + SparseObservable.from_list([("IIIIIX", 1j), ("IIIIII", -0.5), ("rl+-ZI", 0.5)]), + ) + + def test_write_into_attributes_slice(self): + coeffs = SparseObservable.from_list([("XIIZI", 1.5j), ("IIIl0", -0.25), ("1IIIY", 0.5)]) + coeffs.coeffs[:] = [2.0, 0.5, -0.25] + self.assertEqual( + coeffs, SparseObservable.from_list([("XIIZI", 2.0), ("IIIl0", 0.5), ("1IIIY", -0.25)]) + ) + # This should assign the coefficients in reverse order - we more usually spell it + # `coeffs[:] = coeffs{::-1]`, but the idea is to check the set-item slicing order. + coeffs.coeffs[::-1] = coeffs.coeffs[:] + self.assertEqual( + coeffs, SparseObservable.from_list([("XIIZI", -0.25), ("IIIl0", 0.5), ("1IIIY", 2.0)]) + ) + + indices = SparseObservable.from_list([("IIIIZX", 0.25), ("II+-II", 1j), ("rlIIII", 0.5)]) + indices.indices[:4] = [4, 5, 1, 2] + self.assertEqual( + indices, SparseObservable.from_list([("ZXIIII", 0.25), ("III+-I", 1j), ("rlIIII", 0.5)]) + ) + + bit_terms = SparseObservable.from_list([("IIIIZX", 0.25), ("II+-II", 1j), ("rlIIII", 0.5)]) + bit_terms.bit_terms[::2] = [ + SparseObservable.BitTerm.Y, + SparseObservable.BitTerm.RIGHT, + SparseObservable.BitTerm.ZERO, + ] + self.assertEqual( + bit_terms, + SparseObservable.from_list([("IIIIZY", 0.25), ("II+rII", 1j), ("r0IIII", 0.5)]), + ) + + operators = SparseObservable.from_list([("XZY", 1.5j), ("+1r", -0.5)]) + # Reduce all single-qubit terms to the relevant Pauli operator, if they are a projector. + operators.bit_terms[:] = operators.bit_terms[:] & 0b00_11 + self.assertEqual(operators, SparseObservable.from_list([("XZY", 1.5j), ("XZY", -0.5)])) + + boundaries = SparseObservable.from_list([("IIIIZX", 0.25), ("II+-II", 1j), ("rlIIII", 0.5)]) + boundaries.boundaries[1:-1] = [1, 5] + self.assertEqual( + boundaries, + SparseObservable.from_list([("IIIIIX", 0.25), ("Il+-ZI", 1j), ("rIIIII", 0.5)]), + ) + + def test_attributes_reject_bad_writes(self): + obs = SparseObservable.from_list([("XZY", 1.5j), ("+-r", -0.5)]) + with self.assertRaises(TypeError): + obs.coeffs[0] = [0.25j, 0.5j] + with self.assertRaises(TypeError): + obs.bit_terms[0] = [SparseObservable.BitTerm.PLUS] * 4 + with self.assertRaises(TypeError): + obs.indices[0] = [0, 1] + with self.assertRaises(TypeError): + obs.boundaries[0] = (0, 1) + with self.assertRaisesRegex(ValueError, "not a valid letter"): + obs.bit_terms[0] = 0 + with self.assertRaisesRegex(ValueError, "not a valid letter"): + obs.bit_terms[:] = 0 + with self.assertRaisesRegex( + ValueError, "tried to set a slice of length 2 with a sequence of length 1" + ): + obs.coeffs[:] = [1.0j] + with self.assertRaisesRegex( + ValueError, "tried to set a slice of length 6 with a sequence of length 8" + ): + obs.bit_terms[:] = [SparseObservable.BitTerm.Z] * 8 + + def test_attributes_sequence(self): + """Test attributes of the `Sequence` protocol.""" + # Length + obs = SparseObservable.from_list([("XZY", 1.5j), ("+-r", -0.5)]) + self.assertEqual(len(obs.coeffs), 2) + self.assertEqual(len(obs.indices), 6) + self.assertEqual(len(obs.bit_terms), 6) + self.assertEqual(len(obs.boundaries), 3) + + # Iteration + self.assertEqual(list(obs.coeffs), [1.5j, -0.5]) + self.assertEqual(tuple(obs.indices), (0, 1, 2, 0, 1, 2)) + self.assertEqual(next(iter(obs.boundaries)), 0) + # multiple iteration through same object + bit_terms = obs.bit_terms + self.assertEqual(set(bit_terms), {SparseObservable.BitTerm[x] for x in "XYZ+-r"}) + self.assertEqual(set(bit_terms), {SparseObservable.BitTerm[x] for x in "XYZ+-r"}) + + # Implicit iteration methods. + self.assertIn(SparseObservable.BitTerm.PLUS, obs.bit_terms) + self.assertNotIn(4, obs.indices) + self.assertEqual(list(reversed(obs.coeffs)), [-0.5, 1.5j]) + + # Index by scalar + self.assertEqual(obs.coeffs[1], -0.5) + self.assertEqual(obs.indices[-1], 2) + self.assertEqual(obs.bit_terms[0], SparseObservable.BitTerm.Y) + # Make sure that Rust-space actually returns the enum value, not just an `int` (which could + # have compared equal). + self.assertIsInstance(obs.bit_terms[0], SparseObservable.BitTerm) + self.assertEqual(obs.boundaries[-2], 3) + with self.assertRaises(IndexError): + _ = obs.coeffs[10] + with self.assertRaises(IndexError): + _ = obs.boundaries[-4] + + # Index by slice. This is API guaranteed to be a Numpy array to make it easier to + # manipulate subslices with mathematic operations. + self.assertIsInstance(obs.coeffs[:], np.ndarray) + np.testing.assert_array_equal( + obs.coeffs[:], np.array([1.5j, -0.5], dtype=np.complex128), strict=True + ) + self.assertIsInstance(obs.indices[::-1], np.ndarray) + np.testing.assert_array_equal( + obs.indices[::-1], np.array([2, 1, 0, 2, 1, 0], dtype=np.uint32), strict=True + ) + self.assertIsInstance(obs.bit_terms[2:4], np.ndarray) + np.testing.assert_array_equal( + obs.bit_terms[2:4], + np.array([SparseObservable.BitTerm.X, SparseObservable.BitTerm.RIGHT], dtype=np.uint8), + strict=True, + ) + self.assertIsInstance(obs.boundaries[-2:-3:-1], np.ndarray) + np.testing.assert_array_equal( + obs.boundaries[-2:-3:-1], np.array([3], dtype=np.uintp), strict=True + ) + + def test_attributes_to_array(self): + obs = SparseObservable.from_list([("XZY", 1.5j), ("+-r", -0.5)]) + + # Natural dtypes. + np.testing.assert_array_equal( + obs.coeffs, np.array([1.5j, -0.5], dtype=np.complex128), strict=True + ) + np.testing.assert_array_equal( + obs.indices, np.array([0, 1, 2, 0, 1, 2], dtype=np.uint32), strict=True + ) + np.testing.assert_array_equal( + obs.bit_terms, + np.array([SparseObservable.BitTerm[x] for x in "YZXr-+"], dtype=np.uint8), + strict=True, + ) + np.testing.assert_array_equal( + obs.boundaries, np.array([0, 3, 6], dtype=np.uintp), strict=True + ) + + # Cast dtypes. + np.testing.assert_array_equal( + np.array(obs.indices, dtype=np.uint8), + np.array([0, 1, 2, 0, 1, 2], dtype=np.uint8), + strict=True, + ) + np.testing.assert_array_equal( + np.array(obs.boundaries, dtype=np.int64), + np.array([0, 3, 6], dtype=np.int64), + strict=True, + ) + + @unittest.skipIf( + int(np.__version__.split(".", maxsplit=1)[0]) < 2, + "Numpy 1.x did not have a 'copy' keyword parameter to 'numpy.asarray'", + ) + def test_attributes_reject_no_copy_array(self): + obs = SparseObservable.from_list([("XZY", 1.5j), ("+-r", -0.5)]) + with self.assertRaisesRegex(ValueError, "cannot produce a safe view"): + np.asarray(obs.coeffs, copy=False) + with self.assertRaisesRegex(ValueError, "cannot produce a safe view"): + np.asarray(obs.indices, copy=False) + with self.assertRaisesRegex(ValueError, "cannot produce a safe view"): + np.asarray(obs.bit_terms, copy=False) + with self.assertRaisesRegex(ValueError, "cannot produce a safe view"): + np.asarray(obs.boundaries, copy=False) + + def test_attributes_repr(self): + # We're not testing much about the outputs here, just that they don't crash. + obs = SparseObservable.from_list([("XZY", 1.5j), ("+-r", -0.5)]) + self.assertIn("coeffs", repr(obs.coeffs)) + self.assertIn("bit_terms", repr(obs.bit_terms)) + self.assertIn("indices", repr(obs.indices)) + self.assertIn("boundaries", repr(obs.boundaries))