forked from linkedin/Liger-Kernel
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
675 lines (538 loc) · 22.4 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
import importlib
import json
import os
import random
from abc import abstractmethod
from dataclasses import dataclass
from typing import Any
from typing import Dict
from typing import List
from typing import Optional
from typing import Tuple
import numpy as np
import torch
import torch.nn as nn
from tokenizers import AddedToken
from tokenizers import Tokenizer
from tokenizers.models import BPE
from tokenizers.pre_tokenizers import Whitespace
from tokenizers.trainers import BpeTrainer
from transformers import PretrainedConfig
from transformers import PreTrainedModel
from transformers.tokenization_utils_base import BatchEncoding
from liger_kernel.utils import infer_device
device = infer_device()
def set_seed(seed=42):
"""
Fix all random seeds we use for reproducibility.
"""
# Python random seed
random.seed(seed)
# Numpy random seed
np.random.seed(0)
# PyTorch random seed
torch.manual_seed(seed)
if device == "cuda":
# If you are using CUDA
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # if you are using multi-GPU.
# PyTorch backend settings
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
elif device == "xpu":
# If you are using XPU
torch.xpu.manual_seed(seed)
torch.xpu.manual_seed_all(seed)
# Python hash seed
os.environ["PYTHONHASHSEED"] = str(seed)
def assert_verbose_allclose(tensor1, tensor2, rtol=1e-05, atol=1e-08, max_print=5):
"""
Assert that two tensors are element-wise equal within a tolerance, providing detailed information about mismatches.
Parameters:
tensor1 (torch.Tensor): First tensor to compare.
tensor2 (torch.Tensor): Second tensor to compare.
rtol (float): Relative tolerance.
atol (float): Absolute tolerance.
max_print (int): Maximum number of mismatched elements to print.
Raises:
AssertionError: If the tensors are not all close within the given tolerance.
"""
# Check if the shapes of the tensors match
if tensor1.shape != tensor2.shape:
raise AssertionError("Input tensors must have the same shape.")
# Calculate the difference between the tensors
diff = torch.abs(tensor1 - tensor2)
# Determine the tolerance
tolerance = atol + rtol * torch.abs(tensor2)
# Find tolerance mismatched elements
tol_mismatched = diff > tolerance
# Find nan mismatched elements
nan_mismatched = torch.logical_xor(torch.isnan(tensor1), torch.isnan(tensor2))
# Find +inf mismatched elements
posinf_mismatched = torch.logical_xor(torch.isposinf(tensor1), torch.isposinf(tensor2))
# Find -inf mismatched elements
neginf_mismatched = torch.logical_xor(torch.isneginf(tensor1), torch.isneginf(tensor2))
# Find all mismatched elements
mismatched = torch.logical_or(
torch.logical_or(tol_mismatched, nan_mismatched),
torch.logical_or(posinf_mismatched, neginf_mismatched),
)
mismatched_indices = torch.nonzero(mismatched)
# Count the number of mismatched elements
num_mismatched = mismatched.sum().item()
# Check if all elements are close
all_close = num_mismatched == 0
# Raise AssertionError with detailed information if there are mismatches
if not all_close and num_mismatched >= 1:
mismatch_details = [f"Number of mismatched elements: {num_mismatched}"]
print_count = min(max_print, num_mismatched)
for index in mismatched_indices[:print_count]:
i = tuple(index.tolist())
mismatch_details.append(f"Mismatch at index {i}: tensor1[{i}] = {tensor1[i]}, tensor2[{i}] = {tensor2[i]}")
if num_mismatched > max_print:
mismatch_details.append(f"... and {num_mismatched - max_print} more mismatched elements.")
raise AssertionError("\n".join(mismatch_details))
# Pre-tokenized dataset using Mistral-7B tokenizer used for convergence tests
DEFAULT_DATASET_PATH = os.path.join(os.path.dirname(os.path.abspath(__file__)), "resources/tiny_shakespeare_tokenized")
UNTOKENIZED_DATASET_PATH = os.path.join(os.path.dirname(os.path.abspath(__file__)), "resources/tiny_shakespeare.txt")
FAKE_CONFIGS_PATH = os.path.join(os.path.dirname(os.path.abspath(__file__)), "resources/fake_configs")
@dataclass
class MiniModelConfig:
liger_kernel_patch_func: callable
liger_kernel_patch_revert_func: callable
model_class: PreTrainedModel
mini_model_config: PretrainedConfig
def simple_collate_fn(data: List[Dict[str, Any]]):
"""A basic collate function to use for DataLoader"""
input_ids = torch.stack([torch.tensor(item["input_ids"]) for item in data])
attention_mask = torch.stack([torch.tensor(item["attention_mask"]) for item in data])
labels = input_ids.clone()
return BatchEncoding(
{
"input_ids": input_ids,
"attention_mask": attention_mask,
"labels": labels,
}
)
def multimodal_collate_fn(data: List[Dict[str, Any]]):
"""A collate function to use for DataLoader for multimodal models"""
batch = {}
keys = set(data[0].keys())
input_ids = torch.cat([torch.tensor(item["input_ids"]) for item in data])
keys.remove("input_ids")
batch["input_ids"] = input_ids
labels = input_ids.clone()
batch["labels"] = labels
# Collate all other keys, e.g. pixel_values, attention_mask, image_grid_thw, etc
for key in keys:
batch[key] = torch.cat([item[key] for item in data])
return BatchEncoding(batch)
def load_tokenizer_config(config_path: str) -> dict:
"""Load and process tokenizer configuration from a JSON file."""
with open(config_path) as reader:
tokenizer_config = json.load(reader)
tokenizer_config["added_tokens_decoder"] = {
k: AddedToken(**v) for k, v in tokenizer_config["added_tokens_decoder"].items()
}
return tokenizer_config
def train_bpe_tokenizer(special_tokens: List[str], unk_token: str = "<|unk|>"):
"""
Train a tokenizer using the BPE algorithm.
Parameters:
unk_token (str): The token to use for unknown tokens.
special_tokens (List[str]): A list of special tokens to use.
Returns:
Tokenizer: The trained tokenizer.
"""
# Add unk_token to special_tokens if not already present
if unk_token not in special_tokens:
special_tokens.append(unk_token)
tokenizer = Tokenizer(BPE(unk_token=unk_token))
trainer = BpeTrainer(special_tokens=special_tokens)
tokenizer.pre_tokenizer = Whitespace()
file = [UNTOKENIZED_DATASET_PATH]
tokenizer.train(file, trainer)
return tokenizer
def supports_bfloat16():
if device == "cuda":
return torch.cuda.get_device_capability() >= (8, 0) # Ampere and newer
elif device == "xpu":
return True
else:
return False
def revert_liger_kernel_to_granite(model_config: MiniModelConfig):
"""
Revert all Liger kernel patches applied to Granite.
"""
from transformers.models.granite import modeling_granite
importlib.reload(modeling_granite)
model_config.model_class = modeling_granite.GraniteForCausalLM
print("Liger kernel patches have been reverted.")
def revert_liger_kernel_to_llama(model_config: MiniModelConfig):
"""
Revert all Liger kernel patches applied to Llama.
"""
from transformers.models.llama import modeling_llama
importlib.reload(modeling_llama)
model_config.model_class = modeling_llama.LlamaForCausalLM
print("Liger kernel patches have been reverted.")
def revert_liger_kernel_to_mllama(model_config: MiniModelConfig, model_type: str = "causal_lm"):
"""
Revert all Liger kernel patches applied to MLlama.
"""
assert model_type in [
"causal_lm",
"conditional_generation",
], f'model_type must be "causal_lm" or "conditional_generation", Got: {model_type}'
import torch.nn as nn
from transformers.models.mllama import modeling_mllama
importlib.reload(nn)
importlib.reload(modeling_mllama)
if model_type == "causal_lm":
model_config.model_class = modeling_mllama.MllamaForCausalLM
else:
model_config.model_class = modeling_mllama.MllamaForConditionalGeneration
print("Liger kernel patches have been reverted.")
def revert_liger_kernel_to_mistral(model_config: MiniModelConfig):
"""
Revert all Liger kernel patches applied to Mistral.
"""
from transformers.models.mistral import modeling_mistral
importlib.reload(modeling_mistral)
model_config.model_class = modeling_mistral.MistralForCausalLM
print("Liger kernel patches have been reverted.")
def revert_liger_kernel_to_mixtral(model_config: MiniModelConfig):
"""
Revert all Liger kernel patches applied to Mixtral.
"""
from transformers.models.mixtral import modeling_mixtral
importlib.reload(modeling_mixtral)
model_config.model_class = modeling_mixtral.MixtralForCausalLM
print("Liger kernel patches have been reverted.")
def revert_liger_kernel_to_gemma(model_config: MiniModelConfig):
"""
Revert all Liger kernel patches applied to Gemma.
"""
from transformers.models.gemma import modeling_gemma
importlib.reload(modeling_gemma)
model_config.model_class = modeling_gemma.GemmaForCausalLM
print("Liger kernel patches have been reverted.")
def revert_liger_kernel_to_gemma2(model_config: MiniModelConfig):
"""
Revert all Liger kernel patches applied to Gemma2.
"""
from transformers.models.gemma2 import modeling_gemma2
importlib.reload(modeling_gemma2)
model_config.model_class = modeling_gemma2.Gemma2ForCausalLM
print("Liger kernel patches have been reverted.")
def revert_liger_kernel_to_qwen2(model_config: MiniModelConfig):
"""
Revert all Liger kernel patches applied to Qwen2.
"""
from transformers.models.qwen2 import modeling_qwen2
importlib.reload(modeling_qwen2)
model_config.model_class = modeling_qwen2.Qwen2ForCausalLM
print("Liger kernel patches have been reverted.")
def revert_liger_kernel_to_qwen2_vl(model_config: MiniModelConfig):
"""
Revert all Liger kernel patches applied to Qwen2-VL.
"""
from transformers.models.qwen2_vl import modeling_qwen2_vl
importlib.reload(modeling_qwen2_vl)
model_config.model_class = modeling_qwen2_vl.Qwen2VLForConditionalGeneration
print("Liger kernel patches have been reverted.")
def revert_liger_kernel_to_phi3(model_config: MiniModelConfig):
"""
Revert all Liger kernel patches applied to Phi3.
"""
from transformers.models.phi3 import modeling_phi3
importlib.reload(modeling_phi3)
model_config.model_class = modeling_phi3.Phi3ForCausalLM
print("Liger kernel patches have been reverted.")
def revert_liger_kernel_to_olmo2(model_config: MiniModelConfig):
"""
Revert all Liger kernel patches applied to Olmo2.
"""
from transformers.models.olmo2 import modeling_olmo2
importlib.reload(modeling_olmo2)
model_config.model_class = modeling_olmo2.Olmo2ForCausalLM
print("Liger kernel patches have been reverted.")
class HFAlignmentLoss:
def __init__(
self,
alpha: float = 1.0,
beta: float = 0.1,
ignore_index: int = -100,
use_ref_model: bool = False,
unpaired: bool = False,
compute_nll_loss: bool = True,
**kwargs,
):
self.alpha = alpha
self.beta = beta
self.ignore_index = ignore_index
self.use_ref_model = use_ref_model
self.unpaired = unpaired
self.compute_nll_loss = compute_nll_loss
@abstractmethod
def alignment_loss(self):
pass
def get_batch_logps(
self,
logits: torch.FloatTensor,
labels: torch.LongTensor,
average_log_prob: bool = False,
) -> torch.FloatTensor:
"""Compute the log probabilities of the given labels under the given logits.
Args:
logits: Logits of the model (unnormalized). Shape: (batch_size, sequence_length, vocab_size)
labels: Labels for which to compute the log probabilities. Label tokens with a value of ignore_index are ignored. Shape: (batch_size, sequence_length)
average_log_prob: If True, return the average log probability per (non-masked) token. Otherwise, return the sum of the log probabilities of the (non-masked) tokens.
is_encoder_decoder: Whether the model is an encoder-decoder model.
Returns:
A tensor of shape (batch_size,) containing the average/sum log probabilities of the given labels under the given logits.
"""
if logits.shape[:-1] != labels.shape:
raise ValueError("Logits (batch and sequence length dim) and labels must have the same shape.")
loss_mask = labels != self.ignore_index
# dummy token; we'll ignore the losses on these tokens later
labels = torch.where(labels == self.ignore_index, 0, labels)
per_token_logps = torch.gather(logits.log_softmax(-1), dim=2, index=labels.unsqueeze(2)).squeeze(2)
if average_log_prob:
return (per_token_logps * loss_mask).sum(-1) / loss_mask.sum(-1)
else:
return (per_token_logps * loss_mask).sum(-1)
def get_ref_logps(
self,
ref_input: torch.FloatTensor,
ref_weight: torch.FloatTensor,
target: torch.LongTensor,
ref_bias: torch.FloatTensor,
average_log_prob: bool = True,
preference_labels: torch.Tensor = None,
):
"""Compute the log probabilities of the given labels under the given reference model."""
with torch.no_grad():
ref_logits = ref_input @ ref_weight.t()
if ref_bias is not None:
ref_logits = ref_logits + ref_bias
ref_all_logps = self.get_batch_logps(ref_logits, target, average_log_prob=average_log_prob)
if self.unpaired and preference_labels is not None:
# Split based on preference labels
return (
ref_all_logps[preference_labels],
ref_all_logps[~preference_labels],
)
else:
# Original paired behavior - split in half
return (
ref_all_logps[: ref_input.shape[0] // 2],
ref_all_logps[ref_input.shape[0] // 2 :],
)
def concatenated_forward(
self,
_input: torch.FloatTensor,
weight: torch.FloatTensor,
target: torch.LongTensor,
bias: Optional[torch.FloatTensor] = None,
average_log_prob: bool = True,
preference_labels: torch.Tensor = None,
nll_target: Optional[torch.LongTensor] = None,
) -> Tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]:
"""Run the given model on the given batch of inputs, concatenating the chosen and rejected inputs together.
We do this to avoid doing two forward passes, because it's faster for FSDP.
"""
len_chosen = _input.shape[0] // 2
outputs = _input @ weight.t()
if bias is not None:
outputs = outputs + bias
all_logits = outputs.float()
def cross_entropy_loss(logits, labels):
# Flatten the tokens
loss_fct = nn.CrossEntropyLoss(ignore_index=self.ignore_index)
logits = logits.view(-1, logits.shape[-1])
labels = labels.view(-1)
# Enable model parallelism
labels = labels.to(logits.device)
loss = loss_fct(logits, labels)
return loss
labels = nll_target if nll_target is not None else target
chosen_nll_loss = torch.tensor(0.0, device=all_logits.device)
if self.compute_nll_loss:
chosen_nll_loss = cross_entropy_loss(all_logits[:len_chosen], labels[:len_chosen])
all_logps = self.get_batch_logps(
all_logits,
target,
average_log_prob=average_log_prob,
)
if self.unpaired and preference_labels is not None:
# Split based on labels tensor
chosen_logps = all_logps[preference_labels]
rejected_logps = all_logps[~preference_labels]
chosen_logits = all_logits[preference_labels]
rejected_logits = all_logits[~preference_labels]
else:
# Original paired behavior - split in half
len_chosen = _input.shape[0] // 2
chosen_logps = all_logps[:len_chosen]
rejected_logps = all_logps[len_chosen:]
chosen_logits = all_logits[:len_chosen]
rejected_logits = all_logits[len_chosen:]
return (
chosen_logps,
rejected_logps,
chosen_logits,
rejected_logits,
chosen_nll_loss,
)
def get_batch_loss_metrics(
self,
weight: torch.FloatTensor,
_input: torch.FloatTensor,
target: torch.LongTensor,
bias: torch.FloatTensor = None,
ref_input: torch.FloatTensor = None,
ref_weight: torch.FloatTensor = None,
ref_bias: torch.FloatTensor = None,
average_log_prob: bool = True,
preference_labels: torch.Tensor = None,
nll_target: torch.LongTensor = None,
**loss_kwargs,
):
"""Compute the loss metrics for the given batch of inputs for train or test."""
forward_output = self.concatenated_forward(
_input, weight, target, bias, average_log_prob, preference_labels, nll_target
)
(
policy_chosen_logps,
policy_rejected_logps,
policy_chosen_logits,
policy_rejected_logits,
policy_nll_loss,
) = forward_output[:5]
if self.use_ref_model:
ref_chosen_logps, ref_rejected_logps = self.get_ref_logps(
ref_input,
ref_weight,
target,
ref_bias,
average_log_prob,
preference_labels,
)
loss_kwargs["ref_chosen_logps"] = ref_chosen_logps
loss_kwargs["ref_rejected_logps"] = ref_rejected_logps
alignment_loss_outputs = self.alignment_loss(policy_chosen_logps, policy_rejected_logps, **loss_kwargs)
if isinstance(alignment_loss_outputs, tuple):
losses, *aggregated_aux_outputs = alignment_loss_outputs
else:
losses, aggregated_aux_outputs = alignment_loss_outputs, []
loss = policy_nll_loss * self.alpha + losses.mean()
if not self.unpaired:
return_vars = (
policy_chosen_logps,
policy_rejected_logps,
policy_chosen_logits.detach().mean(),
policy_rejected_logits.detach().mean(),
policy_nll_loss,
)
return loss, (*return_vars, *aggregated_aux_outputs)
else:
return loss
class HFDistillationLoss:
def __init__(
self,
weight_hard_loss: float = 0.5,
weight_soft_loss: float = 0.5,
ignore_index: int = -100,
temperature: float = 1,
):
self.weight_hard_loss = weight_hard_loss
self.weight_soft_loss = weight_soft_loss
self.ignore_index = ignore_index
self.temperature = temperature
@abstractmethod
def distillation_loss(self, student_logits, teacher_logits):
"""Abstract method for computing distillation loss."""
pass
def concatenated_forward(
self,
student_input: torch.FloatTensor,
student_weight: torch.FloatTensor,
teacher_input: torch.FloatTensor,
teacher_weight: torch.FloatTensor,
target: torch.LongTensor,
student_bias: torch.FloatTensor = None,
teacher_bias: torch.FloatTensor = None,
) -> Tuple[
torch.FloatTensor,
torch.FloatTensor,
torch.FloatTensor,
torch.FloatTensor,
torch.FloatTensor,
]:
"""Compute forward pass for both student and teacher models."""
student_batch_seq_len_size, student_hidden_size = student_input.shape
student_input_reshaped = student_input.view(-1, student_hidden_size)
teacher_batch_seq_len_size, teacher_hidden_size = teacher_input.shape
teacher_input_reshaped = teacher_input.view(-1, teacher_hidden_size)
student_outputs = student_input_reshaped @ student_weight.t()
if student_bias is not None:
student_outputs = student_outputs + student_bias
with torch.no_grad():
teacher_outputs = teacher_input_reshaped @ teacher_weight.t()
if teacher_bias is not None:
teacher_outputs = teacher_outputs + teacher_bias
student_logits = student_outputs.view(student_batch_seq_len_size, -1).float()
teacher_logits = teacher_outputs.view(teacher_batch_seq_len_size, -1).float()
if torch.all(target == self.ignore_index):
return torch.tensor(0.0)
def cross_entropy_loss(logits, labels):
# Flatten the tokens
loss_fct = nn.CrossEntropyLoss(ignore_index=self.ignore_index)
logits = logits.view(-1, logits.shape[-1])
labels = labels.view(-1)
# Enable model parallelism
labels = labels.to(logits.device)
loss = loss_fct(logits, labels)
return loss
labels = target
ce_loss = cross_entropy_loss(
student_logits.view(-1, student_logits.shape[-1]),
labels.view(-1),
)
return (
student_logits,
teacher_logits,
ce_loss,
)
def get_batch_loss_metrics(
self,
student_input: torch.FloatTensor,
student_weight: torch.FloatTensor,
teacher_input: torch.FloatTensor,
teacher_weight: torch.FloatTensor,
target: torch.LongTensor,
student_bias: torch.FloatTensor = None,
teacher_bias: torch.FloatTensor = None,
):
"""Compute the distillation loss metrics for the given batch."""
forward_output = self.concatenated_forward(
student_input,
student_weight,
teacher_input,
teacher_weight,
target,
student_bias,
teacher_bias,
)
(
student_logits,
teacher_logits,
hard_loss,
) = forward_output
student_logits /= self.temperature
teacher_logits /= self.temperature
soft_loss = self.distillation_loss(student_logits, teacher_logits)
# full loss
loss = self.weight_hard_loss * hard_loss + self.weight_soft_loss * soft_loss
return loss