|
| 1 | +import cv2 |
| 2 | +import numpy as np |
| 3 | + |
| 4 | + |
| 5 | +def nothing(x): |
| 6 | + pass |
| 7 | + |
| 8 | +font = cv2.FONT_HERSHEY_COMPLEX |
| 9 | +cap = cv2.VideoCapture(0) |
| 10 | +cv2.namedWindow("Adjust") |
| 11 | +cv2.createTrackbar("min","Adjust",110,255,nothing) |
| 12 | +#resized = cv2.resize(image, (width, height), interpolation=cv2.INTER_AREA) |
| 13 | +text = 'Left' |
| 14 | +while True: |
| 15 | + ret ,frame = cap.read() |
| 16 | + frame = cv2.resize(frame, (640,480), interpolation=cv2.INTER_AREA) |
| 17 | + cropped = frame[100:400,100:500] |
| 18 | + cropped = cv2.flip(cropped,1) |
| 19 | + temp = cropped |
| 20 | + cropped = cv2.cvtColor(cropped, cv2.COLOR_BGR2GRAY) |
| 21 | + mi = cv2.getTrackbarPos("min","Adjust") |
| 22 | + |
| 23 | + _,threshold = cv2.threshold(cropped,mi,255,cv2.THRESH_BINARY) |
| 24 | + kernal = np.zeros([10,10],np.uint8) |
| 25 | + threshold = cv2.erode(threshold,kernal) |
| 26 | + contours,_=cv2.findContours(threshold,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) |
| 27 | + |
| 28 | + for cnt in contours : |
| 29 | + area = cv2.contourArea(cnt) |
| 30 | + if area > 400 : |
| 31 | + approx = cv2.approxPolyDP(cnt,0.01*cv2.arcLength(cnt,True),True) |
| 32 | + approx_area = cv2.contourArea(approx) |
| 33 | + if(len(approx)==7): |
| 34 | + n = approx.ravel() |
| 35 | + x1 = n[0] |
| 36 | + y1 = n[1] |
| 37 | + x2 = n[2] |
| 38 | + y2 = n[3] |
| 39 | + x3 = n[6] |
| 40 | + y3 = n[7] |
| 41 | + distance1 = (x1 - x2)*(x1 - x2) + (y1 - y2)*(y1 - y2) |
| 42 | + distance2 = (x1 - x3)*(x1 - x3) + (y1 - y3)*(y1 - y3) |
| 43 | + ratio = distance1/distance2 |
| 44 | + if(2500<approx_area<25000 and (0.2<ratio<0.3 or ratio <0.1)): |
| 45 | + cv2.drawContours(temp,[approx],0,(0,0,255),5) |
| 46 | + |
| 47 | + x = approx.ravel()[0] |
| 48 | + y = approx.ravel()[1] |
| 49 | + |
| 50 | + #x1 = n[0] |
| 51 | + #y1 = n[1] |
| 52 | + #x2 = n[2] |
| 53 | + #y2 = n[3] |
| 54 | + #x3 = n[6] |
| 55 | + #y3 = n[7] |
| 56 | + #distance1 = (x1 - x2)*(x1 - x2) + (y1 - y2)*(y1 - y2) |
| 57 | + #distance2 = (x1 - x3)*(x1 - x3) + (y1 - y3)*(y1 - y3) |
| 58 | + if(0.2 < distance1/distance2 < 0.3): |
| 59 | + cv2.putText(temp,"Arrow tip",(x,y),font,0.5,(0,0,255)) |
| 60 | + endx = (n[6]+n[8])/2 |
| 61 | + endy = (n[7]+n[9])/2 |
| 62 | + topx = x1 |
| 63 | + topy = y1 |
| 64 | + length = np.sqrt((topx-endx)*(topx-endx) + (topy-endy)*(topy-endy)) |
| 65 | + y_v = endy-length |
| 66 | + if((topx-endx)==0): |
| 67 | + print(0) |
| 68 | + else: |
| 69 | + tan = (topy - y_v)/(topx - endx) |
| 70 | + print(np.arctan(tan)*57.3*2) |
| 71 | + #between 90 and -90 |
| 72 | + else : |
| 73 | + cv2.putText(temp,"Arrow end",(x,y),font,0.5,(0,0,255)) |
| 74 | + # below 90 and -90 |
| 75 | + if(distance1/distance2 <0.1): |
| 76 | + endx = (n[2]+n[0])/2 |
| 77 | + endy = (n[3]+n[1])/2 |
| 78 | + topx = n[8] |
| 79 | + topy = n[9] |
| 80 | + length = np.sqrt((topx-endx)*(topx-endx) + (topy-endy)*(topy-endy)) |
| 81 | + y_v = endy - length |
| 82 | + if((topx-endx)==0): |
| 83 | + print(180) |
| 84 | + else: |
| 85 | + tan = (topy - y_v)/(topx - endx) |
| 86 | + print(np.arctan(tan)*57.3*2) |
| 87 | + else: |
| 88 | + topx = n[6] |
| 89 | + topy = n[7] |
| 90 | + endx = (n[12]+n[0])/2 |
| 91 | + endy = (n[13]+n[1])/2 |
| 92 | + length = np.sqrt((topx-endx)*(topx-endx) + (topy-endy)*(topy-endy)) |
| 93 | + y_v = endy - length |
| 94 | + if((topx-endx)==0): |
| 95 | + print(180) |
| 96 | + else: |
| 97 | + tan = (topy - y_v)/(topx - endx) |
| 98 | + print(np.arctan(tan*57.3)*2) |
| 99 | + |
| 100 | + cv2.imshow('temp',temp) |
| 101 | + cv2.imshow('threshold',threshold) |
| 102 | + #print(text) |
| 103 | + if cv2.waitKey(1) & 0xFF == ord('q'): |
| 104 | + break |
| 105 | + |
| 106 | +cap.release() |
| 107 | +cv2.destroyAllWindows() |
0 commit comments