|
96 | 96 | "about the notebook document: it just gets sent cells of code to execute when the\n",
|
97 | 97 | "user runs them."
|
98 | 98 | ]
|
| 99 | + }, |
| 100 | + { |
| 101 | + "cell_type": "markdown", |
| 102 | + "metadata": {}, |
| 103 | + "source": [ |
| 104 | + "## Install more languages\n", |
| 105 | + "\n", |
| 106 | + "The exact procedure to install a kernel for a different language will depend on the specificity of each language. \n", |
| 107 | + "Though ther is a common set of step to follow.\n", |
| 108 | + "\n", |
| 109 | + " - Install the language stack you are interested in.\n", |
| 110 | + " - Install the kernel for this language (often using given language package manager).\n", |
| 111 | + " - Register the kernel globally with Jupyter. \n", |
| 112 | + " \n", |
| 113 | + "While usually a kernel is though as a specific language, a kernel may be:\n", |
| 114 | + "\n", |
| 115 | + " - A virtual environment (or equivalent)\n", |
| 116 | + " - A set of configuration/environment variables.\n", |
| 117 | + " - A physical location (for remote kernels)\n", |
| 118 | + " \n", |
| 119 | + "Installing multiple kernels does not automatically allow one notebook to use many languages at once, but this is also possible.\n", |
| 120 | + "\n", |
| 121 | + "A community maintained list of available kernel can be found on the [Jupyter Wiki](https://github.com/jupyter/jupyter/wiki/Jupyter-kernels). " |
| 122 | + ] |
| 123 | + }, |
| 124 | + { |
| 125 | + "cell_type": "markdown", |
| 126 | + "metadata": {}, |
| 127 | + "source": [ |
| 128 | + "### Install a second python kernel\n", |
| 129 | + "\n", |
| 130 | + "\n", |
| 131 | + "Using conda:\n", |
| 132 | + "\n", |
| 133 | + "\n", |
| 134 | + "```\n", |
| 135 | + "$ conda create -n pycon-env python=3.6 --yes --quiet\n", |
| 136 | + "$ source activate pycon-env\n", |
| 137 | + "(pycon-env)$ conda install ipykernel --yes\n", |
| 138 | + "(pycon-env)$ python -m ipykernel install --name pycon-kernel\n", |
| 139 | + "Installed kernelspec pycon-kernel in /usr/local/share/jupyter/kernels/pycon-kernel\n", |
| 140 | + "```\n", |
| 141 | + "\n", |
| 142 | + "Available options are `--user`, `--name <machine-readable-name>`, `--display-name <\"User Friendly Name\">`" |
| 143 | + ] |
| 144 | + }, |
| 145 | + { |
| 146 | + "cell_type": "markdown", |
| 147 | + "metadata": {}, |
| 148 | + "source": [ |
| 149 | + "### Install and R kernel\n", |
| 150 | + "\n", |
| 151 | + "\n", |
| 152 | + "Again using conda, let's install the R stack and create an R kernel.\n", |
| 153 | + "\n", |
| 154 | + "In a shell:\n", |
| 155 | + "```\n", |
| 156 | + "$ conda install -c r r # install r form teh R channel\n", |
| 157 | + "$ conda install -c r r-irkernel\n", |
| 158 | + "$ r\n", |
| 159 | + "> IRkernel::installspec()\n", |
| 160 | + "```\n", |
| 161 | + "\n", |
| 162 | + "If you are not using conda you may need to replace by :\n", |
| 163 | + "\n", |
| 164 | + "```\n", |
| 165 | + "$ R\n", |
| 166 | + "> install.packages(c('repr', 'IRdisplay', 'evaluate', 'crayon', 'pbdZMQ', 'devtools', 'uuid', 'digest'))\n", |
| 167 | + "...\n", |
| 168 | + "> devtools::install_github('IRkernel/IRkernel')\n", |
| 169 | + "```\n", |
| 170 | + "\n", |
| 171 | + "You may want to install Rin the **same** environment as the previous Python Kernel if you wish to do R **and** python inthe same notebook. " |
| 172 | + ] |
| 173 | + }, |
| 174 | + { |
| 175 | + "cell_type": "markdown", |
| 176 | + "metadata": {}, |
| 177 | + "source": [ |
| 178 | + "### install more kernels\n", |
| 179 | + "\n", |
| 180 | + "Feel fre to experiment with other kernel, poke at the installed kernelspec folders. Use the following to list all the kernels and their locations:\n", |
| 181 | + "\n", |
| 182 | + "```\n", |
| 183 | + "$ jupyter kernelspec list\n", |
| 184 | + "Available kernels:\n", |
| 185 | + " ir /home/jovyan/.local/share/jupyter/kernels/ir\n", |
| 186 | + " julia-0.5 /opt/conda/share/jupyter/kernels/julia-0.5\n", |
| 187 | + " python3 /opt/conda/share/jupyter/kernels/python3\n", |
| 188 | + " python2 /usr/local/share/jupyter/kernels/python2\n", |
| 189 | + "```" |
| 190 | + ] |
| 191 | + }, |
| 192 | + { |
| 193 | + "cell_type": "markdown", |
| 194 | + "metadata": {}, |
| 195 | + "source": [ |
| 196 | + "The above process can take a long time, need to compile a few modules. You may want to try the `jupyter/datascience-notebook` Docker image which already have Python, Julia and R installed. Warning the Docker image is big (several GB) ! Please don't try to download it on Conference wifi. " |
| 197 | + ] |
99 | 198 | }
|
100 | 199 | ],
|
101 | 200 | "metadata": {
|
|
114 | 213 | "name": "python",
|
115 | 214 | "nbconvert_exporter": "python",
|
116 | 215 | "pygments_lexer": "ipython3",
|
117 |
| - "version": "3.4.3" |
| 216 | + "version": "3.6.0" |
118 | 217 | }
|
119 | 218 | },
|
120 | 219 | "nbformat": 4,
|
121 |
| - "nbformat_minor": 0 |
| 220 | + "nbformat_minor": 1 |
122 | 221 | }
|
0 commit comments