1010
1111par1 = {'nt' : 101 , 'nx' : 31 , 'ny' : 10 ,
1212 'nfft' : None , 'real' : False ,
13- 'ffthshift' : False } # nfft=nt, complex input
13+ 'ffthshift' : False , 'dtype' : np . complex128 } # nfft=nt, complex input
1414par2 = {'nt' : 101 , 'nx' : 31 , 'ny' : 10 ,
1515 'nfft' : 256 , 'real' : False ,
16- 'ffthshift' : False } # nfft>nt, complex input
16+ 'ffthshift' : False , 'dtype' : np . complex64 } # nfft>nt, complex input
1717par3 = {'nt' : 101 , 'nx' : 31 , 'ny' : 10 ,
1818 'nfft' : None , 'real' : True ,
19- 'ffthshift' : False } # nfft=nt, real input
19+ 'ffthshift' : False , 'dtype' : np . float64 } # nfft=nt, real input
2020par4 = {'nt' : 101 , 'nx' : 31 , 'ny' : 10 ,
2121 'nfft' : 256 , 'real' : True ,
22- 'ffthshift' : False } # nfft>nt, real input
22+ 'ffthshift' : False , 'dtype' : np . float32 } # nfft>nt, real input
2323par5 = {'nt' : 101 , 'nx' : 31 , 'ny' : 10 ,
2424 'nfft' : 256 , 'real' : True ,
25- 'ffthshift' : True } # nfft>nt, real input and fftshift
25+ 'ffthshift' : True , 'dtype' : np . float32 } # nfft>nt, real input and fftshift
2626
2727@pytest .mark .parametrize ("par" , [(par1 ), (par2 ), (par3 ), (par4 ), (par5 )])
2828def test_FFT_1dsignal (par ):
@@ -33,8 +33,9 @@ def test_FFT_1dsignal(par):
3333 x = da .from_array (np .sin (2 * np .pi * f0 * t ))
3434 nfft = par ['nt' ] if par ['nfft' ] is None else par ['nfft' ]
3535 dFFTop = dFFT (dims = [par ['nt' ]], nfft = nfft , sampling = dt , real = par ['real' ],
36- chunks = (par ['nt' ], nfft ))
37- FFTop = FFT (dims = [par ['nt' ]], nfft = nfft , sampling = dt , real = par ['real' ])
36+ chunks = (par ['nt' ], nfft ), dtype = par ['dtype' ])
37+ FFTop = FFT (dims = [par ['nt' ]], nfft = nfft , sampling = dt , real = par ['real' ],
38+ dtype = par ['dtype' ])
3839
3940 # FFT with real=True cannot pass dot-test neither be inverted correctly,
4041 # see FFT documentation for a detailed explanation. We thus test FFT.H*FFT
@@ -71,8 +72,9 @@ def test_FFT_2dsignal(par):
7172 nfft = par ['nt' ] if par ['nfft' ] is None else par ['nfft' ]
7273 dFFTop = dFFT (dims = (nt , nx ), dir = 0 , nfft = nfft ,
7374 sampling = dt , real = par ['real' ],
74- chunks = ((nt , nx ), (nfft , nx )))
75- FFTop = FFT (dims = (nt , nx ), dir = 0 , nfft = nfft , sampling = dt )
75+ chunks = ((nt , nx ), (nfft , nx )), dtype = par ['dtype' ])
76+ FFTop = FFT (dims = (nt , nx ), dir = 0 , nfft = nfft , sampling = dt ,
77+ dtype = par ['dtype' ])
7678
7779 # FFT with real=True cannot pass dot-test neither be inverted correctly,
7880 # see FFT documentation for a detailed explanation. We thus test FFT.H*FFT
@@ -96,8 +98,10 @@ def test_FFT_2dsignal(par):
9698 # 2nd dimension
9799 nfft = par ['nx' ] if par ['nfft' ] is None else par ['nfft' ]
98100 dFFTop = dFFT (dims = (nt , nx ), dir = 1 , nfft = nfft , sampling = dt ,
99- real = par ['real' ], chunks = ((nt , nx ), (nt , nfft )))
100- FFTop = FFT (dims = (nt , nx ), dir = 1 , nfft = nfft , sampling = dt )
101+ real = par ['real' ], chunks = ((nt , nx ), (nt , nfft )),
102+ dtype = par ['dtype' ])
103+ FFTop = FFT (dims = (nt , nx ), dir = 1 , nfft = nfft , sampling = dt ,
104+ dtype = par ['dtype' ])
101105
102106 # FFT with real=True cannot pass dot-test neither be inverted correctly,
103107 # see FFT documentation for a detailed explanation. We thus test FFT.H*FFT
@@ -134,9 +138,10 @@ def test_FFT_3dsignal(par):
134138 # 1st dimension
135139 nfft = par ['nt' ] if par ['nfft' ] is None else par ['nfft' ]
136140 dFFTop = dFFT (dims = (nt , nx , ny ), dir = 0 , nfft = nfft , sampling = dt ,
137- real = par ['real' ], chunks = ((nt , nx , ny ), (nfft , nx , ny )))
141+ real = par ['real' ], chunks = ((nt , nx , ny ), (nfft , nx , ny )),
142+ dtype = par ['dtype' ])
138143 FFTop = FFT (dims = (nt , nx , ny ), dir = 0 , nfft = nfft , sampling = dt ,
139- real = par ['real' ])
144+ real = par ['real' ], dtype = par [ 'dtype' ] )
140145
141146 # FFT with real=True cannot pass dot-test neither be inverted correctly,
142147 # see FFT documentation for a detailed explanation. We thus test FFT.H*FFT
@@ -160,9 +165,10 @@ def test_FFT_3dsignal(par):
160165 # 2nd dimension
161166 nfft = par ['nx' ] if par ['nfft' ] is None else par ['nfft' ]
162167 dFFTop = dFFT (dims = (nt , nx , ny ), dir = 1 , nfft = nfft , sampling = dt ,
163- real = par ['real' ], chunks = ((nt , nx , ny ), (nt , nfft , ny )))
168+ real = par ['real' ], chunks = ((nt , nx , ny ), (nt , nfft , ny )),
169+ dtype = par ['dtype' ])
164170 FFTop = FFT (dims = (nt , nx , ny ), dir = 1 , nfft = nfft , sampling = dt ,
165- real = par ['real' ])
171+ real = par ['real' ], dtype = par [ 'dtype' ] )
166172
167173 # FFT with real=True cannot pass dot-test neither be inverted correctly,
168174 # see FFT documentation for a detailed explanation. We thus test FFT.H*FFT
@@ -186,9 +192,10 @@ def test_FFT_3dsignal(par):
186192 # 3rd dimension
187193 nfft = par ['ny' ] if par ['nfft' ] is None else par ['nfft' ]
188194 dFFTop = dFFT (dims = (nt , nx , ny ), dir = 2 , nfft = nfft , sampling = dt ,
189- real = par ['real' ], chunks = ((nt , nx , ny ), (nt , ny , nfft )))
195+ real = par ['real' ], chunks = ((nt , nx , ny ), (nt , ny , nfft )),
196+ dtype = par ['dtype' ])
190197 FFTop = FFT (dims = (nt , nx , ny ), dir = 2 , nfft = nfft , sampling = dt ,
191- real = par ['real' ])
198+ real = par ['real' ], dtype = par [ 'dtype' ] )
192199
193200 # FFT with real=True cannot pass dot-test neither be inverted correctly,
194201 # see FFT documentation for a detailed explanation. We thus test FFT.H*FFT
0 commit comments