-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathtrain_GLUNet.py
250 lines (221 loc) · 12.5 KB
/
train_GLUNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import numpy as np
import argparse
import time
import random
import os
from os import path as osp
from termcolor import colored
import pickle
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
import torch.optim.lr_scheduler as lr_scheduler
from datasets.training_dataset import HomoAffTps_Dataset
from datasets.load_pre_made_dataset import PreMadeDataset
from utils_training.optimize_GLUNet_with_adaptive_resolution import train_epoch, validate_epoch
from models.our_models.GLUNet import GLUNet_model
from utils_training.utils_CNN import load_checkpoint, save_checkpoint, boolean_string
from tensorboardX import SummaryWriter
from utils.image_transforms import ArrayToTensor
if __name__ == "__main__":
# Argument parsing
parser = argparse.ArgumentParser(description='GLU-Net train script')
# Paths
parser.add_argument('--name_exp', type=str,
default=time.strftime('%Y_%m_%d_%H_%M'),
help='name of the experiment to save')
parser.add_argument('--pre_loaded_training_dataset', default=False, type=boolean_string,
help='Synthetic training dataset is already created and saved in disk ? default is False')
parser.add_argument('--training_data_dir', type=str,
help='path to directory containing original images for training if --pre_loaded_training_'
'dataset is False or containing the synthetic pairs of training images and their '
'corresponding flow fields if --pre_loaded_training_dataset is True')
parser.add_argument('--evaluation_data_dir', type=str,
help='path to directory containing original images for validation if --pre_loaded_training_'
'dataset is False or containing the synthetic pairs of validation images and their '
'corresponding flow fields if --pre_loaded_training_dataset is True')
parser.add_argument('--snapshots', type=str, default='./snapshots')
parser.add_argument('--pretrained', dest='pretrained', default=None,
help='path to pre-trained model')
# Optimization parameters
parser.add_argument('--lr', type=float, default=0.0001, help='learning rate')
parser.add_argument('--momentum', type=float,
default=4e-4, help='momentum constant')
parser.add_argument('--start_epoch', type=int, default=-1,
help='start epoch')
parser.add_argument('--n_epoch', type=int, default=100,
help='number of training epochs')
parser.add_argument('--batch-size', type=int, default=16,
help='training batch size')
parser.add_argument('--n_threads', type=int, default=8,
help='number of parallel threads for dataloaders')
parser.add_argument('--weight-decay', type=float, default=4e-4,
help='weight decay constant')
parser.add_argument('--div_flow', type=float, default=1.0,
help='div flow')
parser.add_argument('--seed', type=int, default=1986,
help='Pseudo-RNG seed')
args = parser.parse_args()
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)
# datasets, pre-processing of the images is done within the network function !
source_img_transforms = transforms.Compose([ArrayToTensor(get_float=False)])
target_img_transforms = transforms.Compose([ArrayToTensor(get_float=False)])
if not args.pre_loaded_training_dataset:
# training dataset, created on the fly at each epoch
pyramid_param = [520] # means that we get the ground-truth flow field at this size
train_dataset = HomoAffTps_Dataset(image_path=args.training_data_dir,
csv_file=osp.join('datasets', 'csv_files',
'homo_aff_tps_train_DPED_CityScape_ADE.csv'),
transforms=source_img_transforms,
transforms_target=target_img_transforms,
pyramid_param=pyramid_param,
get_flow=True,
output_size=(520, 520))
# validation dataset
pyramid_param = [520]
val_dataset = HomoAffTps_Dataset(image_path=args.evaluation_data_dir,
csv_file=osp.join('datasets', 'csv_files',
'homo_aff_tps_test_DPED_CityScape_ADE.csv'),
transforms=source_img_transforms,
transforms_target=target_img_transforms,
pyramid_param=pyramid_param,
get_flow=True,
output_size=(520, 520))
else:
# If synthetic pairs were already created and saved to disk, run instead of 'train_dataset' the following.
# and replace args.training_data_dir by the root to folders containing images/ and flow/
flow_transform = transforms.Compose([ArrayToTensor()]) # just put channels first and put it to float
train_dataset, _ = PreMadeDataset(root=args.training_data_dir,
source_image_transform=source_img_transforms,
target_image_transform=target_img_transforms,
flow_transform=flow_transform,
co_transform=None,
split=1) # only training
_, val_dataset = PreMadeDataset(root=args.evaluation_data_dir,
source_image_transform=source_img_transforms,
target_image_transform=target_img_transforms,
flow_transform=flow_transform,
co_transform=None,
split=0) # only validation
# Dataloader
train_dataloader = DataLoader(train_dataset,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.n_threads)
val_dataloader = DataLoader(val_dataset,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.n_threads)
# models
'''
Default GLU-Net parameters:
model = GLUNet_model(batch_norm=True, pyramid_type='VGG',
div=args.div_flow, evaluation=False,
consensus_network=False,
cyclic_consistency=True,
dense_connection=True,
decoder_inputs='corr_flow_feat',
refinement_at_all_levels=False,
refinement_at_adaptive_reso=True)
For SemanticGLU-Net:
model = SemanticGLUNet_model(batch_norm=True, pyramid_type='VGG',
div=args.div_flow, evaluation=False,
cyclic_consistency=False, consensus_network=True)
One can change the parameters
'''
model = GLUNet_model(batch_norm=True, pyramid_type='VGG',
div=args.div_flow, evaluation=False,
consensus_network=False,
cyclic_consistency=True,
dense_connection=True,
decoder_inputs='corr_flow_feat',
refinement_at_all_levels=False,
refinement_at_adaptive_reso=True)
print(colored('==> ', 'blue') + 'GLU-Net created.')
# Optimizer
optimizer = \
optim.Adam(filter(lambda p: p.requires_grad, model.parameters()),
lr=args.lr,
weight_decay=args.weight_decay)
scheduler = lr_scheduler.MultiStepLR(optimizer,
milestones=[65, 75, 95],
gamma=0.5)
weights_loss_coeffs = [0.32, 0.08, 0.02, 0.01]
if args.pretrained:
# reload from pre_trained_model
model, optimizer, scheduler, start_epoch, best_val = load_checkpoint(model, optimizer, scheduler,
filename=args.pretrained)
# now individually transfer the optimizer parts...
for state in optimizer.state.values():
for k, v in state.items():
if isinstance(v, torch.Tensor):
state[k] = v.to(device)
cur_snapshot = os.path.basename(os.path.dirname(args.pretrained))
else:
if not os.path.isdir(args.snapshots):
os.mkdir(args.snapshots)
cur_snapshot = args.name_exp
if not osp.isdir(osp.join(args.snapshots, cur_snapshot)):
os.makedirs(osp.join(args.snapshots, cur_snapshot))
with open(osp.join(args.snapshots, cur_snapshot, 'args.pkl'), 'wb') as f:
pickle.dump(args, f)
best_val = float("inf")
start_epoch = 0
# create summary writer
save_path = osp.join(args.snapshots, cur_snapshot)
train_writer = SummaryWriter(os.path.join(save_path, 'train'))
test_writer = SummaryWriter(os.path.join(save_path, 'test'))
model = nn.DataParallel(model)
model = model.to(device)
train_started = time.time()
for epoch in range(start_epoch, args.n_epoch):
scheduler.step()
print('starting epoch {}: learning rate is {}'.format(epoch, scheduler.get_lr()[0]))
# Training one epoch
train_loss = train_epoch(model,
optimizer,
train_dataloader,
device,
epoch,
train_writer,
div_flow=args.div_flow,
save_path=os.path.join(save_path, 'train'),
loss_grid_weights=weights_loss_coeffs)
train_writer.add_scalar('train loss', train_loss, epoch)
train_writer.add_scalar('learning_rate', scheduler.get_lr()[0], epoch)
print(colored('==> ', 'green') + 'Train average loss:', train_loss)
# Validation
val_loss_grid, val_mean_epe, val_mean_epe_H_8, val_mean_epe_32, val_mean_epe_16 = \
validate_epoch(model, val_dataloader, device, epoch=epoch,
save_path=os.path.join(save_path, 'test'),
div_flow=args.div_flow,
loss_grid_weights=weights_loss_coeffs)
print(colored('==> ', 'blue') + 'Val average grid loss :',
val_loss_grid)
print('mean EPE is {}'.format(val_mean_epe))
print('mean EPE from reso H/8 is {}'.format(val_mean_epe_H_8))
print('mean EPE from reso 32 is {}'.format(val_mean_epe_32))
print('mean EPE from reso 16 is {}'.format(val_mean_epe_16))
test_writer.add_scalar('validation images: mean EPE ', val_mean_epe, epoch)
test_writer.add_scalar('validation images: mean EPE_from_reso_H_8', val_mean_epe_H_8, epoch)
test_writer.add_scalar('validation images: mean EPE_from_reso_32', val_mean_epe_32, epoch)
test_writer.add_scalar('validation images: mean EPE_from_reso_16', val_mean_epe_16, epoch)
test_writer.add_scalar('validation images: val loss', val_loss_grid, epoch)
print(colored('==> ', 'blue') + 'finished epoch :', epoch + 1)
# save checkpoint for each epoch and a fine called best_model so far
is_best = val_mean_epe < best_val
best_val = min(val_mean_epe, best_val)
save_checkpoint({'epoch': epoch + 1,
'state_dict': model.module.state_dict(),
'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict(),
'best_loss': best_val},
is_best, save_path, 'epoch_{}.pth'.format(epoch + 1))
print(args.seed, 'Training took:', time.time()-train_started, 'seconds')