Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
57 commits
Select commit Hold shift + click to select a range
eef70a7
8274 Relax gpu load check (#8282)
yiheng-wang-nv Jan 6, 2025
f650feb
bug: Fix PatchMerging duplicate merging (#8285)
pooya-mohammadi Jan 10, 2025
5da95c8
Fix test load image issue (#8297)
yiheng-wang-nv Jan 14, 2025
d14b6bf
Using LocalStore in Zarr v3 (#8299)
KumoLiu Jan 15, 2025
e516098
8267 fix normalize intensity (#8286)
advcu987 Jan 20, 2025
26ff1b6
Fix bundle download error from ngc source (#8307)
KumoLiu Jan 21, 2025
8f4bdcf
Fix deprecated usage in zarr (#8313)
KumoLiu Jan 24, 2025
106a3c8
update pydicom reader to enable gpu load (#8283)
yiheng-wang-nv Jan 27, 2025
621fc5f
Zarr compression tests only with versions before 3.0 (#8319)
ericspod Feb 3, 2025
3b83a56
add rectified flow noise scheduler to monai
Can-Zhao Mar 5, 2025
dff1a4a
Changing utils.py to test_utils.py (#8335)
ericspod Feb 11, 2025
2c63f5a
8185 - Refactor test (#8231)
garciadias Feb 12, 2025
2016d20
Recursive Item Mapping for Nested Lists in Compose (#8187)
KumoLiu Feb 12, 2025
e8b500b
Bump min torch to 1.13.1 to mitigate CVE-2022-45907 unsafe usage of e…
jamesobutler Feb 14, 2025
749693b
Inferer modification - save_intermediates clashes with latent shape a…
virginiafdez Feb 18, 2025
599f8a9
Fix `packaging` imports in version comparison logic (#8347)
nkaenzig Feb 19, 2025
87a6c4c
Removed outdated `torch` version checks from transform functions (#8359)
nkaenzig Feb 19, 2025
17440c8
Fix CommonKeys docstring (#8342)
bartosz-grabowski Feb 20, 2025
90dd2cc
Add Average Precision to metrics (#8089)
thibaultdvx Feb 20, 2025
ab46efc
Solves path problem in test_bundle_trt_export.py (#8357)
garciadias Feb 20, 2025
a9a7082
8354 fix path at test onnx trt export (#8361)
garciadias Feb 21, 2025
cf9fb59
Modify ControlNet inferer so that it takes in context when the diffus…
virginiafdez Feb 24, 2025
4b4d92c
Update monaihosting download method (#8364)
yiheng-wang-nv Feb 25, 2025
092978c
Bump torch minimum to mitigate CVE-2024-31580 & CVE-2024-31583 and en…
jamesobutler Mar 4, 2025
784b19f
add rectified flow for accelerated diffusion model
Can-Zhao Mar 5, 2025
28c3d68
reformat
Can-Zhao Mar 5, 2025
dc7b8a6
reformat
Can-Zhao Mar 5, 2025
0bbc0dd
reformat
Can-Zhao Mar 5, 2025
c070581
reformat
Can-Zhao Mar 5, 2025
b036450
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Mar 5, 2025
81663db
add prev_original
Can-Zhao Mar 5, 2025
c314dbf
black
Can-Zhao Mar 5, 2025
e7bb70d
add doc
Can-Zhao Mar 5, 2025
b24af70
add doc
Can-Zhao Mar 5, 2025
4499780
add doc
Can-Zhao Mar 5, 2025
74e0a9b
update doc
Can-Zhao Mar 6, 2025
fd8d7f5
Update autoencoderkl_maisi.py
Can-Zhao Feb 6, 2025
ecdb812
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Feb 6, 2025
9909859
Update autoencoderkl_maisi.py
Can-Zhao Feb 7, 2025
6726747
DCO Remediation Commit for Can Zhao <69829124+Can-Zhao@users.noreply.…
Can-Zhao Feb 11, 2025
0ff3034
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Feb 11, 2025
454496f
Auto3DSeg algo_template hash update (#8378)
monai-bot Mar 7, 2025
2df4637
rm redundant line
Can-Zhao Mar 10, 2025
e428c38
Enable Pytorch 2.6 (#8309)
ericspod Mar 8, 2025
eaa803f
conflict
Can-Zhao Mar 10, 2025
8555b67
make it 2D/3D compartible, rm a outdated comment
Can-Zhao Mar 10, 2025
14664e8
make it 2D/3D compartible, rm a outdated comment
Can-Zhao Mar 10, 2025
20aa7fd
make it 2D/3D compartible, rm a outdated comment
Can-Zhao Mar 10, 2025
3144c8a
make it 2D/3D compartible
Can-Zhao Mar 10, 2025
0bf0041
add more test
Can-Zhao Mar 10, 2025
acb5a5c
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Mar 10, 2025
e320ecc
reformat
Can-Zhao Mar 10, 2025
80a298d
reformat
Can-Zhao Mar 10, 2025
c2e3cb5
add more test
Can-Zhao Mar 10, 2025
40be2a6
reformat
Can-Zhao Mar 10, 2025
b9ceccf
reformat
Can-Zhao Mar 10, 2025
9685e9f
reformat
Can-Zhao Mar 10, 2025
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
35 changes: 35 additions & 0 deletions docs/source/networks.rst
Original file line number Diff line number Diff line change
Expand Up @@ -750,3 +750,38 @@ Utilities

.. automodule:: monai.apps.reconstruction.networks.nets.utils
:members:

Noise Schedulers
----------------
.. automodule:: monai.networks.schedulers
.. currentmodule:: monai.networks.schedulers

`Scheduler`
~~~~~~~~~~~
.. autoclass:: Scheduler
:members:

`NoiseSchedules`
~~~~~~~~~~~~~~~~
.. autoclass:: NoiseSchedules
:members:

`DDPMScheduler`
~~~~~~~~~~~~~~~
.. autoclass:: DDPMScheduler
:members:

`DDIMScheduler`
~~~~~~~~~~~~~~~
.. autoclass:: DDIMScheduler
:members:

`PNDMScheduler`
~~~~~~~~~~~~~~~
.. autoclass:: PNDMScheduler
:members:

`RFlowScheduler`
~~~~~~~~~~~~~~~~
.. autoclass:: RFlowScheduler
:members:
4 changes: 4 additions & 0 deletions monai/apps/generation/maisi/networks/autoencoderkl_maisi.py
Original file line number Diff line number Diff line change
Expand Up @@ -232,6 +232,10 @@ def forward(self, x: torch.Tensor) -> torch.Tensor:
if self.print_info:
logger.info(f"Number of splits: {self.num_splits}")

if self.dim_split <= 1 and self.num_splits <= 1:
x = self.conv(x)
return x

# compute size of splits
l = x.size(self.dim_split + 2)
split_size = l // self.num_splits
Expand Down
38 changes: 29 additions & 9 deletions monai/inferers/inferer.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,7 +39,7 @@
SPADEAutoencoderKL,
SPADEDiffusionModelUNet,
)
from monai.networks.schedulers import Scheduler
from monai.networks.schedulers import RFlowScheduler, Scheduler
from monai.transforms import CenterSpatialCrop, SpatialPad
from monai.utils import BlendMode, Ordering, PatchKeys, PytorchPadMode, ensure_tuple, optional_import
from monai.visualize import CAM, GradCAM, GradCAMpp
Expand Down Expand Up @@ -859,12 +859,18 @@ def sample(
if not scheduler:
scheduler = self.scheduler
image = input_noise

all_next_timesteps = torch.cat((scheduler.timesteps[1:], torch.tensor([0], dtype=scheduler.timesteps.dtype)))
if verbose and has_tqdm:
progress_bar = tqdm(scheduler.timesteps)
progress_bar = tqdm(
zip(scheduler.timesteps, all_next_timesteps),
total=min(len(scheduler.timesteps), len(all_next_timesteps)),
)
else:
progress_bar = iter(scheduler.timesteps)
progress_bar = iter(zip(scheduler.timesteps, all_next_timesteps))
intermediates = []
for t in progress_bar:

for t, next_t in progress_bar:
# 1. predict noise model_output
diffusion_model = (
partial(diffusion_model, seg=seg)
Expand All @@ -882,9 +888,13 @@ def sample(
)

# 2. compute previous image: x_t -> x_t-1
image, _ = scheduler.step(model_output, t, image) # type: ignore[operator]
if not isinstance(scheduler, RFlowScheduler):
image, _ = scheduler.step(model_output, t, image) # type: ignore
else:
image, _ = scheduler.step(model_output, t, image, next_t) # type: ignore
if save_intermediates and t % intermediate_steps == 0:
intermediates.append(image)

if save_intermediates:
return image, intermediates
else:
Expand Down Expand Up @@ -1392,12 +1402,18 @@ def sample( # type: ignore[override]
if not scheduler:
scheduler = self.scheduler
image = input_noise

all_next_timesteps = torch.cat((scheduler.timesteps[1:], torch.tensor([0], dtype=scheduler.timesteps.dtype)))
if verbose and has_tqdm:
progress_bar = tqdm(scheduler.timesteps)
progress_bar = tqdm(
zip(scheduler.timesteps, all_next_timesteps),
total=min(len(scheduler.timesteps), len(all_next_timesteps)),
)
else:
progress_bar = iter(scheduler.timesteps)
progress_bar = iter(zip(scheduler.timesteps, all_next_timesteps))
intermediates = []
for t in progress_bar:

for t, next_t in progress_bar:
diffuse = diffusion_model
if isinstance(diffusion_model, SPADEDiffusionModelUNet):
diffuse = partial(diffusion_model, seg=seg)
Expand Down Expand Up @@ -1436,7 +1452,11 @@ def sample( # type: ignore[override]
)

# 3. compute previous image: x_t -> x_t-1
image, _ = scheduler.step(model_output, t, image) # type: ignore[operator]
if not isinstance(scheduler, RFlowScheduler):
image, _ = scheduler.step(model_output, t, image) # type: ignore
else:
image, _ = scheduler.step(model_output, t, image, next_t) # type: ignore

if save_intermediates and t % intermediate_steps == 0:
intermediates.append(image)
if save_intermediates:
Expand Down
1 change: 1 addition & 0 deletions monai/networks/schedulers/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,4 +14,5 @@
from .ddim import DDIMScheduler
from .ddpm import DDPMScheduler
from .pndm import PNDMScheduler
from .rectified_flow import RFlowScheduler
from .scheduler import NoiseSchedules, Scheduler
Loading
Loading