@@ -411,7 +411,7 @@ def rotate(img, angle, output_shape, mode, padding_mode, align_corners, dtype, l
411411 return out .copy_meta_from (meta_info ) if isinstance (out , MetaTensor ) else out
412412
413413
414- def zoom (img , scale_factor , keep_size , mode , padding_mode , align_corners , dtype , lazy , transform_info ):
414+ def zoom (img , scale_factor , keep_size , mode , padding_mode , align_corners , dtype , lazy , transform_info , ** kwargs ):
415415 """
416416 Functional implementation of zoom.
417417 This function operates eagerly or lazily according to
@@ -450,7 +450,7 @@ def zoom(img, scale_factor, keep_size, mode, padding_mode, align_corners, dtype,
450450 if keep_size :
451451 do_pad_crop = not np .allclose (output_size , im_shape )
452452 if do_pad_crop and lazy : # update for lazy evaluation
453- _pad_crop = ResizeWithPadOrCrop (spatial_size = im_shape , mode = padding_mode )
453+ _pad_crop = ResizeWithPadOrCrop (spatial_size = im_shape , mode = padding_mode , ** kwargs )
454454 _pad_crop .lazy = True
455455 _tmp_img = MetaTensor ([], affine = torch .eye (len (output_size ) + 1 ))
456456 _tmp_img .push_pending_operation ({LazyAttr .SHAPE : list (output_size ), LazyAttr .AFFINE : xform })
@@ -486,7 +486,7 @@ def zoom(img, scale_factor, keep_size, mode, padding_mode, align_corners, dtype,
486486 out = out .copy_meta_from (meta_info )
487487 do_pad_crop = not np .allclose (output_size , zoomed .shape [1 :])
488488 if do_pad_crop :
489- _pad_crop = ResizeWithPadOrCrop (spatial_size = img_t .shape [1 :], mode = padding_mode )
489+ _pad_crop = ResizeWithPadOrCrop (spatial_size = img_t .shape [1 :], mode = padding_mode , ** kwargs )
490490 out = _pad_crop (out )
491491 if get_track_meta () and do_pad_crop :
492492 padcrop_xform = out .applied_operations .pop ()
0 commit comments