@@ -301,7 +301,7 @@ def zoom(img, scale_factor, keep_size, mode, padding_mode, align_corners, transf
301301 "padcrop" : {},
302302 }
303303 if keep_size :
304- if transform_info .get (TraceKeys .LAZY_EVALUATION ):
304+ if transform_info .get (TraceKeys .LAZY_EVALUATION , False ):
305305 raise NotImplementedError ("keep_size=True is not supported for lazy evaluation." )
306306 output_size = [int (i ) for i in img .shape [1 :]]
307307 meta_info = TraceableTransform .track_transform_tensor (
@@ -314,7 +314,7 @@ def zoom(img, scale_factor, keep_size, mode, padding_mode, align_corners, transf
314314 lazy_evaluation = transform_info .get (TraceKeys .LAZY_EVALUATION , False ),
315315 )
316316 out = convert_to_tensor (img , track_meta = get_track_meta ())
317- if transform_info .get (TraceKeys .LAZY_EVALUATION ):
317+ if transform_info .get (TraceKeys .LAZY_EVALUATION , False ):
318318 return out .copy_meta_from (meta_info ) if isinstance (out , MetaTensor ) else out
319319 img_t = out .to (torch .float32 )
320320 zoomed : NdarrayOrTensor = torch .nn .functional .interpolate (
@@ -389,7 +389,7 @@ def affine_func(img, affine, grid, resampler, sp_size, mode, padding_mode, do_re
389389 lazy_evaluation = transform_info .get (TraceKeys .LAZY_EVALUATION , False ),
390390 )
391391 out = convert_to_tensor (img , track_meta = get_track_meta ())
392- if transform_info .get (TraceKeys .LAZY_EVALUATION ):
392+ if transform_info .get (TraceKeys .LAZY_EVALUATION , False ):
393393 out = out .copy_meta_from (meta_info ) if isinstance (out , MetaTensor ) else out
394394 return out if image_only else (out , affine )
395395 if do_resampling :
0 commit comments