|
| 1 | +# Copyright (c) MONAI Consortium |
| 2 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 3 | +# you may not use this file except in compliance with the License. |
| 4 | +# You may obtain a copy of the License at |
| 5 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 6 | +# Unless required by applicable law or agreed to in writing, software |
| 7 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 8 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 9 | +# See the License for the specific language governing permissions and |
| 10 | +# limitations under the License. |
| 11 | + |
| 12 | +from __future__ import annotations |
| 13 | + |
| 14 | +import numpy as np |
| 15 | +from numpy.typing import NDArray |
| 16 | + |
| 17 | +from monai.utils import min_version, optional_import |
| 18 | + |
| 19 | +__all__ = ["UltrasoundConfidenceMap"] |
| 20 | + |
| 21 | +cv2, _ = optional_import("cv2") |
| 22 | +csc_matrix, _ = optional_import("scipy.sparse", "1.7.1", min_version, "csc_matrix") |
| 23 | +spsolve, _ = optional_import("scipy.sparse.linalg", "1.7.1", min_version, "spsolve") |
| 24 | +hilbert, _ = optional_import("scipy.signal", "1.7.1", min_version, "hilbert") |
| 25 | + |
| 26 | + |
| 27 | +class UltrasoundConfidenceMap: |
| 28 | + """Compute confidence map from an ultrasound image. |
| 29 | + This transform uses the method introduced by Karamalis et al. in https://doi.org/10.1016/j.media.2012.07.005. |
| 30 | + It generates a confidence map by setting source and sink points in the image and computing the probability |
| 31 | + for random walks to reach the source for each pixel. |
| 32 | +
|
| 33 | + Args: |
| 34 | + alpha (float, optional): Alpha parameter. Defaults to 2.0. |
| 35 | + beta (float, optional): Beta parameter. Defaults to 90.0. |
| 36 | + gamma (float, optional): Gamma parameter. Defaults to 0.05. |
| 37 | + mode (str, optional): 'RF' or 'B' mode data. Defaults to 'B'. |
| 38 | + sink_mode (str, optional): Sink mode. Defaults to 'all'. If 'mask' is selected, a mask must be when calling |
| 39 | + the transform. Can be 'all', 'mid', 'min', or 'mask'. |
| 40 | + """ |
| 41 | + |
| 42 | + def __init__(self, alpha: float = 2.0, beta: float = 90.0, gamma: float = 0.05, mode="B", sink_mode="all"): |
| 43 | + # The hyperparameters for confidence map estimation |
| 44 | + self.alpha = alpha |
| 45 | + self.beta = beta |
| 46 | + self.gamma = gamma |
| 47 | + self.mode = mode |
| 48 | + self.sink_mode = sink_mode |
| 49 | + |
| 50 | + # The precision to use for all computations |
| 51 | + self.eps = np.finfo("float64").eps |
| 52 | + |
| 53 | + # Store sink indices for external use |
| 54 | + self._sink_indices = np.array([], dtype="float64") |
| 55 | + |
| 56 | + def sub2ind(self, size: tuple[int, ...], rows: NDArray, cols: NDArray) -> NDArray: |
| 57 | + """Converts row and column subscripts into linear indices, |
| 58 | + basically the copy of the MATLAB function of the same name. |
| 59 | + https://www.mathworks.com/help/matlab/ref/sub2ind.html |
| 60 | +
|
| 61 | + This function is Pythonic so the indices start at 0. |
| 62 | +
|
| 63 | + Args: |
| 64 | + size Tuple[int]: Size of the matrix |
| 65 | + rows (NDArray): Row indices |
| 66 | + cols (NDArray): Column indices |
| 67 | +
|
| 68 | + Returns: |
| 69 | + indices (NDArray): 1-D array of linear indices |
| 70 | + """ |
| 71 | + indices: NDArray = rows + cols * size[0] |
| 72 | + return indices |
| 73 | + |
| 74 | + def get_seed_and_labels( |
| 75 | + self, data: NDArray, sink_mode: str = "all", sink_mask: NDArray | None = None |
| 76 | + ) -> tuple[NDArray, NDArray]: |
| 77 | + """Get the seed and label arrays for the max-flow algorithm |
| 78 | +
|
| 79 | + Args: |
| 80 | + data: Input array |
| 81 | + sink_mode (str, optional): Sink mode. Defaults to 'all'. |
| 82 | + sink_mask (NDArray, optional): Sink mask. Defaults to None. |
| 83 | +
|
| 84 | + Returns: |
| 85 | + Tuple[NDArray, NDArray]: Seed and label arrays |
| 86 | + """ |
| 87 | + |
| 88 | + # Seeds and labels (boundary conditions) |
| 89 | + seeds = np.array([], dtype="float64") |
| 90 | + labels = np.array([], dtype="float64") |
| 91 | + |
| 92 | + # Indices for all columns |
| 93 | + sc = np.arange(data.shape[1], dtype="float64") |
| 94 | + |
| 95 | + # SOURCE ELEMENTS - 1st matrix row |
| 96 | + # Indices for 1st row, it will be broadcasted with sc |
| 97 | + sr_up = np.array([0]) |
| 98 | + seed = self.sub2ind(data.shape, sr_up, sc).astype("float64") |
| 99 | + seed = np.unique(seed) |
| 100 | + seeds = np.concatenate((seeds, seed)) |
| 101 | + |
| 102 | + # Label 1 |
| 103 | + label = np.ones_like(seed) |
| 104 | + labels = np.concatenate((labels, label)) |
| 105 | + |
| 106 | + # Create seeds for sink elements |
| 107 | + |
| 108 | + if sink_mode == "all": |
| 109 | + # All elements in the last row |
| 110 | + sr_down = np.ones_like(sc) * (data.shape[0] - 1) |
| 111 | + self._sink_indices = np.array([sr_down, sc], dtype="int32") |
| 112 | + seed = self.sub2ind(data.shape, sr_down, sc).astype("float64") |
| 113 | + |
| 114 | + elif sink_mode == "mid": |
| 115 | + # Middle element in the last row |
| 116 | + sc_down = np.array([data.shape[1] // 2]) |
| 117 | + sr_down = np.ones_like(sc_down) * (data.shape[0] - 1) |
| 118 | + self._sink_indices = np.array([sr_down, sc_down], dtype="int32") |
| 119 | + seed = self.sub2ind(data.shape, sr_down, sc_down).astype("float64") |
| 120 | + |
| 121 | + elif sink_mode == "min": |
| 122 | + # Minimum element in the last row (excluding 10% from the edges) |
| 123 | + ten_percent = int(data.shape[1] * 0.1) |
| 124 | + min_val = np.min(data[-1, ten_percent:-ten_percent]) |
| 125 | + min_idxs = np.where(data[-1, ten_percent:-ten_percent] == min_val)[0] + ten_percent |
| 126 | + sc_down = min_idxs |
| 127 | + sr_down = np.ones_like(sc_down) * (data.shape[0] - 1) |
| 128 | + self._sink_indices = np.array([sr_down, sc_down], dtype="int32") |
| 129 | + seed = self.sub2ind(data.shape, sr_down, sc_down).astype("float64") |
| 130 | + |
| 131 | + elif sink_mode == "mask": |
| 132 | + # All elements in the mask |
| 133 | + coords = np.where(sink_mask != 0) |
| 134 | + sr_down = coords[0] |
| 135 | + sc_down = coords[1] |
| 136 | + self._sink_indices = np.array([sr_down, sc_down], dtype="int32") |
| 137 | + seed = self.sub2ind(data.shape, sr_down, sc_down).astype("float64") |
| 138 | + |
| 139 | + seed = np.unique(seed) |
| 140 | + seeds = np.concatenate((seeds, seed)) |
| 141 | + |
| 142 | + # Label 2 |
| 143 | + label = np.ones_like(seed) * 2 |
| 144 | + labels = np.concatenate((labels, label)) |
| 145 | + |
| 146 | + return seeds, labels |
| 147 | + |
| 148 | + def normalize(self, inp: NDArray) -> NDArray: |
| 149 | + """Normalize an array to [0, 1]""" |
| 150 | + normalized_array: NDArray = (inp - np.min(inp)) / (np.ptp(inp) + self.eps) |
| 151 | + return normalized_array |
| 152 | + |
| 153 | + def attenuation_weighting(self, img: NDArray, alpha: float) -> NDArray: |
| 154 | + """Compute attenuation weighting |
| 155 | +
|
| 156 | + Args: |
| 157 | + img (NDArray): Image |
| 158 | + alpha: Attenuation coefficient (see publication) |
| 159 | +
|
| 160 | + Returns: |
| 161 | + w (NDArray): Weighting expressing depth-dependent attenuation |
| 162 | + """ |
| 163 | + |
| 164 | + # Create depth vector and repeat it for each column |
| 165 | + dw = np.linspace(0, 1, img.shape[0], dtype="float64") |
| 166 | + dw = np.tile(dw.reshape(-1, 1), (1, img.shape[1])) |
| 167 | + |
| 168 | + w: NDArray = 1.0 - np.exp(-alpha * dw) # Compute exp inline |
| 169 | + |
| 170 | + return w |
| 171 | + |
| 172 | + def confidence_laplacian(self, padded_index: NDArray, padded_image: NDArray, beta: float, gamma: float): |
| 173 | + """Compute 6-Connected Laplacian for confidence estimation problem |
| 174 | +
|
| 175 | + Args: |
| 176 | + padded_index (NDArray): The index matrix of the image with boundary padding. |
| 177 | + padded_image (NDArray): The padded image. |
| 178 | + beta (float): Random walks parameter that defines the sensitivity of the Gaussian weighting function. |
| 179 | + gamma (float): Horizontal penalty factor that adjusts the weight of horizontal edges in the Laplacian. |
| 180 | +
|
| 181 | + Returns: |
| 182 | + L (csc_matrix): The 6-connected Laplacian matrix used for confidence map estimation. |
| 183 | + """ |
| 184 | + |
| 185 | + m, _ = padded_index.shape |
| 186 | + |
| 187 | + padded_index = padded_index.T.flatten() |
| 188 | + padded_image = padded_image.T.flatten() |
| 189 | + |
| 190 | + p = np.where(padded_index > 0)[0] |
| 191 | + |
| 192 | + i = padded_index[p] - 1 # Index vector |
| 193 | + j = padded_index[p] - 1 # Index vector |
| 194 | + # Entries vector, initially for diagonal |
| 195 | + s = np.zeros_like(p, dtype="float64") |
| 196 | + |
| 197 | + edge_templates = [ |
| 198 | + -1, # Vertical edges |
| 199 | + 1, |
| 200 | + m - 1, # Diagonal edges |
| 201 | + m + 1, |
| 202 | + -m - 1, |
| 203 | + -m + 1, |
| 204 | + m, # Horizontal edges |
| 205 | + -m, |
| 206 | + ] |
| 207 | + |
| 208 | + vertical_end = None |
| 209 | + |
| 210 | + for iter_idx, k in enumerate(edge_templates): |
| 211 | + neigh_idxs = padded_index[p + k] |
| 212 | + |
| 213 | + q = np.where(neigh_idxs > 0)[0] |
| 214 | + |
| 215 | + ii = padded_index[p[q]] - 1 |
| 216 | + i = np.concatenate((i, ii)) |
| 217 | + jj = neigh_idxs[q] - 1 |
| 218 | + j = np.concatenate((j, jj)) |
| 219 | + w = np.abs(padded_image[p[ii]] - padded_image[p[jj]]) # Intensity derived weight |
| 220 | + s = np.concatenate((s, w)) |
| 221 | + |
| 222 | + if iter_idx == 1: |
| 223 | + vertical_end = s.shape[0] # Vertical edges length |
| 224 | + elif iter_idx == 5: |
| 225 | + s.shape[0] # Diagonal edges length |
| 226 | + |
| 227 | + # Normalize weights |
| 228 | + s = self.normalize(s) |
| 229 | + |
| 230 | + # Horizontal penalty |
| 231 | + s[:vertical_end] += gamma |
| 232 | + # s[vertical_end:diagonal_end] += gamma * np.sqrt(2) # --> In the paper it is sqrt(2) |
| 233 | + # since the diagonal edges are longer yet does not exist in the original code |
| 234 | + |
| 235 | + # Normalize differences |
| 236 | + s = self.normalize(s) |
| 237 | + |
| 238 | + # Gaussian weighting function |
| 239 | + s = -( |
| 240 | + (np.exp(-beta * s, dtype="float64")) + 1.0e-6 |
| 241 | + ) # --> This epsilon changes results drastically default: 1.e-6 |
| 242 | + |
| 243 | + # Create Laplacian, diagonal missing |
| 244 | + lap = csc_matrix((s, (i, j))) |
| 245 | + |
| 246 | + # Reset diagonal weights to zero for summing |
| 247 | + # up the weighted edge degree in the next step |
| 248 | + lap.setdiag(0) |
| 249 | + |
| 250 | + # Weighted edge degree |
| 251 | + diag = np.abs(lap.sum(axis=0).A)[0] |
| 252 | + |
| 253 | + # Finalize Laplacian by completing the diagonal |
| 254 | + lap.setdiag(diag) |
| 255 | + |
| 256 | + return lap |
| 257 | + |
| 258 | + def _solve_linear_system(self, lap, rhs): |
| 259 | + x = spsolve(lap, rhs) |
| 260 | + |
| 261 | + return x |
| 262 | + |
| 263 | + def confidence_estimation(self, img, seeds, labels, beta, gamma): |
| 264 | + """Compute confidence map |
| 265 | +
|
| 266 | + Args: |
| 267 | + img (NDArray): Processed image. |
| 268 | + seeds (NDArray): Seeds for the random walks framework. These are indices of the source and sink nodes. |
| 269 | + labels (NDArray): Labels for the random walks framework. These represent the classes or groups of the seeds. |
| 270 | + beta: Random walks parameter that defines the sensitivity of the Gaussian weighting function. |
| 271 | + gamma: Horizontal penalty factor that adjusts the weight of horizontal edges in the Laplacian. |
| 272 | +
|
| 273 | + Returns: |
| 274 | + map: Confidence map which shows the probability of each pixel belonging to the source or sink group. |
| 275 | + """ |
| 276 | + |
| 277 | + # Index matrix with boundary padding |
| 278 | + idx = np.arange(1, img.shape[0] * img.shape[1] + 1).reshape(img.shape[1], img.shape[0]).T |
| 279 | + pad = 1 |
| 280 | + |
| 281 | + padded_idx = np.pad(idx, (pad, pad), "constant", constant_values=(0, 0)) |
| 282 | + padded_img = np.pad(img, (pad, pad), "constant", constant_values=(0, 0)) |
| 283 | + |
| 284 | + # Laplacian |
| 285 | + lap = self.confidence_laplacian(padded_idx, padded_img, beta, gamma) |
| 286 | + |
| 287 | + # Select marked columns from Laplacian to create L_M and B^T |
| 288 | + b = lap[:, seeds] |
| 289 | + |
| 290 | + # Select marked nodes to create B^T |
| 291 | + n = np.sum(padded_idx > 0).item() |
| 292 | + i_u = np.setdiff1d(np.arange(n), seeds.astype(int)) # Index of unmarked nodes |
| 293 | + b = b[i_u, :] |
| 294 | + |
| 295 | + # Remove marked nodes from Laplacian by deleting rows and cols |
| 296 | + keep_indices = np.setdiff1d(np.arange(lap.shape[0]), seeds) |
| 297 | + lap = csc_matrix(lap[keep_indices, :][:, keep_indices]) |
| 298 | + |
| 299 | + # Define M matrix |
| 300 | + m = np.zeros((seeds.shape[0], 1), dtype="float64") |
| 301 | + m[:, 0] = labels == 1 |
| 302 | + |
| 303 | + # Right-handside (-B^T*M) |
| 304 | + rhs = -b @ m # type: ignore |
| 305 | + |
| 306 | + # Solve linear system |
| 307 | + x = self._solve_linear_system(lap, rhs) |
| 308 | + |
| 309 | + # Prepare output |
| 310 | + probabilities = np.zeros((n,), dtype="float64") |
| 311 | + # Probabilities for unmarked nodes |
| 312 | + probabilities[i_u] = x |
| 313 | + # Max probability for marked node |
| 314 | + probabilities[seeds[labels == 1].astype(int)] = 1.0 |
| 315 | + |
| 316 | + # Final reshape with same size as input image (no padding) |
| 317 | + probabilities = probabilities.reshape((img.shape[1], img.shape[0])).T |
| 318 | + |
| 319 | + return probabilities |
| 320 | + |
| 321 | + def __call__(self, data: NDArray, sink_mask: NDArray | None = None) -> NDArray: |
| 322 | + """Compute the confidence map |
| 323 | +
|
| 324 | + Args: |
| 325 | + data (NDArray): RF ultrasound data (one scanline per column) [H x W] 2D array |
| 326 | +
|
| 327 | + Returns: |
| 328 | + map (NDArray): Confidence map [H x W] 2D array |
| 329 | + """ |
| 330 | + |
| 331 | + # Normalize data |
| 332 | + data = data.astype("float64") |
| 333 | + data = self.normalize(data) |
| 334 | + |
| 335 | + if self.mode == "RF": |
| 336 | + # MATLAB hilbert applies the Hilbert transform to columns |
| 337 | + data = np.abs(hilbert(data, axis=0)).astype("float64") # type: ignore |
| 338 | + |
| 339 | + seeds, labels = self.get_seed_and_labels(data, self.sink_mode, sink_mask) |
| 340 | + |
| 341 | + # Attenuation with Beer-Lambert |
| 342 | + w = self.attenuation_weighting(data, self.alpha) |
| 343 | + |
| 344 | + # Apply weighting directly to image |
| 345 | + # Same as applying it individually during the formation of the |
| 346 | + # Laplacian |
| 347 | + data = data * w |
| 348 | + |
| 349 | + # Find condidence values |
| 350 | + map_: NDArray = self.confidence_estimation(data, seeds, labels, self.beta, self.gamma) |
| 351 | + |
| 352 | + return map_ |
0 commit comments