-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
mlflow_handler.py
483 lines (414 loc) · 22.7 KB
/
mlflow_handler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import os
import time
import warnings
from collections.abc import Callable, Mapping, Sequence
from pathlib import Path
from typing import TYPE_CHECKING, Any
import torch
from torch.utils.data import Dataset
from monai.apps.utils import get_logger
from monai.utils import CommonKeys, IgniteInfo, ensure_tuple, flatten_dict, min_version, optional_import
Events, _ = optional_import("ignite.engine", IgniteInfo.OPT_IMPORT_VERSION, min_version, "Events")
mlflow, _ = optional_import("mlflow", descriptor="Please install mlflow before using MLFlowHandler.")
mlflow.entities, _ = optional_import(
"mlflow.entities", descriptor="Please install mlflow.entities before using MLFlowHandler."
)
MlflowException, _ = optional_import(
"mlflow.exceptions", name="MlflowException", descriptor="Please install mlflow before using MLFlowHandler."
)
pandas, _ = optional_import("pandas", descriptor="Please install pandas for recording the dataset.")
tqdm, _ = optional_import("tqdm", "4.47.0", min_version, "tqdm")
if TYPE_CHECKING:
from ignite.engine import Engine
else:
Engine, _ = optional_import(
"ignite.engine", IgniteInfo.OPT_IMPORT_VERSION, min_version, "Engine", as_type="decorator"
)
DEFAULT_TAG = "Loss"
logger = get_logger(module_name=__name__)
class MLFlowHandler:
"""
MLFlowHandler defines a set of Ignite Event-handlers for the MLFlow tracking logics.
It can be used for any Ignite Engine(trainer, validator and evaluator).
And it can track both epoch level and iteration level logging, then MLFlow can store
the data and visualize.
The expected data source is Ignite ``engine.state.output`` and ``engine.state.metrics``.
Default behaviors:
- When EPOCH_COMPLETED, track each dictionary item in
``engine.state.metrics`` in MLFlow.
- When ITERATION_COMPLETED, track expected item in
``self.output_transform(engine.state.output)`` in MLFlow, default to `Loss`.
Usage example is available in the tutorial:
https://github.com/Project-MONAI/tutorials/blob/master/3d_segmentation/unet_segmentation_3d_ignite.ipynb.
Args:
tracking_uri: connects to a tracking URI. can also set the `MLFLOW_TRACKING_URI` environment
variable to have MLflow find a URI from there. in both cases, the URI can either be
an HTTP/HTTPS URI for a remote server, a database connection string, or a local path
to log data to a directory. The URI defaults to path `mlruns`.
for more details: https://mlflow.org/docs/latest/python_api/mlflow.html#mlflow.set_tracking_uri.
iteration_log: whether to log data to MLFlow when iteration completed, default to `True`.
``iteration_log`` can be also a function and it will be interpreted as an event filter
(see https://pytorch.org/ignite/generated/ignite.engine.events.Events.html for details).
Event filter function accepts as input engine and event value (iteration) and should return True/False.
epoch_log: whether to log data to MLFlow when epoch completed, default to `True`.
``epoch_log`` can be also a function and it will be interpreted as an event filter.
See ``iteration_log`` argument for more details.
epoch_logger: customized callable logger for epoch level logging with MLFlow.
Must accept parameter "engine", use default logger if None.
iteration_logger: customized callable logger for iteration level logging with MLFlow.
Must accept parameter "engine", use default logger if None.
dataset_logger: customized callable logger to log the dataset information with MLFlow.
Must accept parameter "dataset_dict", use default logger if None.
dataset_dict: a dictionary in which the key is the name of the dataset and the value is a PyTorch
dataset, that needs to be recorded. This arg is only useful when MLFlow version >= 2.4.0.
For more details about how to log data with MLFlow, please go to the website:
https://mlflow.org/docs/latest/python_api/mlflow.data.html.
dataset_keys: a key or a collection of keys to indicate contents in the dataset that
need to be stored by MLFlow.
output_transform: a callable that is used to transform the
``ignite.engine.state.output`` into a scalar to track, or a dictionary of {key: scalar}.
By default this value logging happens when every iteration completed.
The default behavior is to track loss from output[0] as output is a decollated list
and we replicated loss value for every item of the decollated list.
`engine.state` and `output_transform` inherit from the ignite concept:
https://pytorch-ignite.ai/concepts/03-state/, explanation and usage example are in the tutorial:
https://github.com/Project-MONAI/tutorials/blob/master/modules/batch_output_transform.ipynb.
global_epoch_transform: a callable that is used to customize global epoch number.
For example, in evaluation, the evaluator engine might want to track synced epoch number
with the trainer engine.
state_attributes: expected attributes from `engine.state`, if provided, will extract them
when epoch completed.
tag_name: when iteration output is a scalar, `tag_name` is used to track, defaults to `'Loss'`.
experiment_name: the experiment name of MLflow, default to `'monai_experiment'`. An experiment can be
used to record several runs.
run_name: the run name in an experiment. A run can be used to record information about a workflow,
like the loss, metrics and so on.
experiment_param: a dict recording parameters which will not change through the whole workflow,
like torch version, cuda version and so on.
artifacts: paths to images that need to be recorded after running the workflow.
optimizer_param_names: parameter names in the optimizer that need to be recorded during running the
workflow, default to `'lr'`.
close_on_complete: whether to close the mlflow run in `complete` phase in workflow, default to False.
For more details of MLFlow usage, please refer to: https://mlflow.org/docs/latest/index.html.
"""
# parameters that are logged at the start of training
default_tracking_params = ["max_epochs", "epoch_length"]
def __init__(
self,
tracking_uri: str | None = None,
iteration_log: bool | Callable[[Engine, int], bool] = True,
epoch_log: bool | Callable[[Engine, int], bool] = True,
epoch_logger: Callable[[Engine], Any] | None = None,
iteration_logger: Callable[[Engine], Any] | None = None,
dataset_logger: Callable[[Mapping[str, Dataset]], Any] | None = None,
dataset_dict: Mapping[str, Dataset] | None = None,
dataset_keys: str = CommonKeys.IMAGE,
output_transform: Callable = lambda x: x[0],
global_epoch_transform: Callable = lambda x: x,
state_attributes: Sequence[str] | None = None,
tag_name: str = DEFAULT_TAG,
experiment_name: str = "monai_experiment",
run_name: str | None = None,
experiment_param: dict | None = None,
artifacts: str | Sequence[Path] | None = None,
optimizer_param_names: str | Sequence[str] = "lr",
close_on_complete: bool = False,
) -> None:
self.iteration_log = iteration_log
self.epoch_log = epoch_log
self.epoch_logger = epoch_logger
self.iteration_logger = iteration_logger
self.dataset_logger = dataset_logger
self.output_transform = output_transform
self.global_epoch_transform = global_epoch_transform
self.state_attributes = state_attributes
self.tag_name = tag_name
self.experiment_name = experiment_name
self.run_name = run_name
self.experiment_param = experiment_param
self.artifacts = ensure_tuple(artifacts)
self.optimizer_param_names = ensure_tuple(optimizer_param_names)
self.client = mlflow.MlflowClient(tracking_uri=tracking_uri if tracking_uri else None)
self.run_finish_status = mlflow.entities.RunStatus.to_string(mlflow.entities.RunStatus.FINISHED)
self.close_on_complete = close_on_complete
self.experiment = None
self.cur_run = None
self.dataset_dict = dataset_dict
self.dataset_keys = ensure_tuple(dataset_keys)
def _delete_exist_param_in_dict(self, param_dict: dict) -> None:
"""
Delete parameters in given dict, if they are already logged by current mlflow run.
Args:
param_dict: parameter dict to be logged to mlflow.
"""
if self.cur_run is None:
return
key_list = list(param_dict.keys())
log_data = self.client.get_run(self.cur_run.info.run_id).data
log_param_dict = log_data.params
for key in key_list:
if key in log_param_dict:
del param_dict[key]
def attach(self, engine: Engine) -> None:
"""
Register a set of Ignite Event-Handlers to a specified Ignite engine.
Args:
engine: Ignite Engine, it can be a trainer, validator or evaluator.
"""
if not engine.has_event_handler(self.start, Events.STARTED):
engine.add_event_handler(Events.STARTED, self.start)
if self.iteration_log and not engine.has_event_handler(self.iteration_completed, Events.ITERATION_COMPLETED):
event = Events.ITERATION_COMPLETED
if callable(self.iteration_log): # substitute event with new one using filter callable
event = event(event_filter=self.iteration_log)
engine.add_event_handler(event, self.iteration_completed)
if self.epoch_log and not engine.has_event_handler(self.epoch_completed, Events.EPOCH_COMPLETED):
event = Events.EPOCH_COMPLETED
if callable(self.epoch_log): # substitute event with new one using filter callable
event = event(event_filter=self.epoch_log)
engine.add_event_handler(event, self.epoch_completed)
if not engine.has_event_handler(self.complete, Events.COMPLETED):
engine.add_event_handler(Events.COMPLETED, self.complete)
if self.close_on_complete and (not engine.has_event_handler(self.close, Events.COMPLETED)):
engine.add_event_handler(Events.COMPLETED, self.close)
def start(self, engine: Engine) -> None:
"""
Check MLFlow status and start if not active.
"""
self._set_experiment()
if not self.experiment:
raise ValueError(f"Failed to set experiment '{self.experiment_name}' as the active experiment")
if not self.cur_run:
run_name = f"run_{time.strftime('%Y%m%d_%H%M%S')}" if self.run_name is None else self.run_name
runs = self.client.search_runs(self.experiment.experiment_id)
runs = [r for r in runs if r.info.run_name == run_name or not self.run_name]
# runs marked as finish should not record info any more
runs = [r for r in runs if r.info.status != self.run_finish_status]
if runs:
self.cur_run = self.client.get_run(runs[-1].info.run_id) # pick latest active run
else:
self.cur_run = self.client.create_run(experiment_id=self.experiment.experiment_id, run_name=run_name)
if self.experiment_param:
self._log_params(self.experiment_param)
attrs = {attr: getattr(engine.state, attr, None) for attr in self.default_tracking_params}
self._delete_exist_param_in_dict(attrs)
self._log_params(attrs)
if self.dataset_logger:
self.dataset_logger(self.dataset_dict)
else:
self._default_dataset_log(self.dataset_dict)
def _set_experiment(self):
experiment = self.experiment
if not experiment:
for _retry_time in range(3):
try:
experiment = self.client.get_experiment_by_name(self.experiment_name)
if not experiment:
experiment_id = self.client.create_experiment(self.experiment_name)
experiment = self.client.get_experiment(experiment_id)
break
except MlflowException as e:
if "RESOURCE_ALREADY_EXISTS" in str(e):
logger.warning("Experiment already exists; delaying before retrying.")
time.sleep(1)
if _retry_time == 2:
raise e
else:
raise e
if experiment.lifecycle_stage != mlflow.entities.LifecycleStage.ACTIVE:
raise ValueError(f"Cannot set a deleted experiment '{self.experiment_name}' as the active experiment")
self.experiment = experiment
@staticmethod
def _get_pandas_dataset_info(pandas_dataset):
dataset_name = pandas_dataset.name
return {
f"{dataset_name}_digest": pandas_dataset.digest,
f"{dataset_name}_samples": pandas_dataset.profile["num_rows"],
}
def _log_dataset(self, sample_dict: dict[str, Any], context: str = "train") -> None:
if not self.cur_run:
raise ValueError("Current Run is not Active to log the dataset")
# Need to update the self.cur_run to sync the dataset log, otherwise the `inputs` info will be out-of-date.
self.cur_run = self.client.get_run(self.cur_run.info.run_id)
logged_set = [x for x in self.cur_run.inputs.dataset_inputs if x.dataset.name.startswith(context)]
# In case there are datasets with the same name.
dataset_count = str(len(logged_set))
dataset_name = f"{context}_dataset_{dataset_count}"
sample_df = pandas.DataFrame(sample_dict)
dataset = mlflow.data.from_pandas(sample_df, name=dataset_name)
exist_dataset_list = list(
filter(lambda x: x.dataset.digest == dataset.digest, self.cur_run.inputs.dataset_inputs)
)
if not len(exist_dataset_list):
datasets = [mlflow.entities.DatasetInput(dataset._to_mlflow_entity())]
self.client.log_inputs(run_id=self.cur_run.info.run_id, datasets=datasets)
dataset_info = MLFlowHandler._get_pandas_dataset_info(dataset)
self._log_params(dataset_info)
def _log_params(self, params: dict[str, Any]) -> None:
if not self.cur_run:
raise ValueError("Current Run is not Active to log params")
params_arr = [mlflow.entities.Param(key, str(value)) for key, value in params.items()]
self.client.log_batch(run_id=self.cur_run.info.run_id, metrics=[], params=params_arr, tags=[])
def _log_metrics(self, metrics: dict[str, Any], step: int | None = None) -> None:
if not self.cur_run:
raise ValueError("Current Run is not Active to log metrics")
run_id = self.cur_run.info.run_id
timestamp = int(time.time() * 1000)
metrics_arr = [
mlflow.entities.Metric(key, value, timestamp, step or 0) for key, value in flatten_dict(metrics).items()
]
self.client.log_batch(run_id=run_id, metrics=metrics_arr, params=[], tags=[])
def _parse_artifacts(self):
"""
Log artifacts to mlflow. Given a path, all files in the path will be logged recursively.
Given a file, it will be logged to mlflow.
"""
artifact_list = []
for path_name in self.artifacts:
# in case the input is (None,) by default
if not path_name:
continue
if os.path.isfile(path_name):
artifact_list.append(path_name)
else:
for root, _, filenames in os.walk(path_name):
for filename in filenames:
file_path = os.path.join(root, filename)
artifact_list.append(file_path)
return artifact_list
def complete(self) -> None:
"""
Handler for train or validation/evaluation completed Event.
"""
if self.artifacts and self.cur_run:
artifact_list = self._parse_artifacts()
for artifact in artifact_list:
self.client.log_artifact(self.cur_run.info.run_id, artifact)
def close(self) -> None:
"""
Stop current running logger of MLFlow.
"""
if self.cur_run:
self.client.set_terminated(self.cur_run.info.run_id, self.run_finish_status)
self.cur_run = None
def epoch_completed(self, engine: Engine) -> None:
"""
Handler for train or validation/evaluation epoch completed Event.
Track epoch level log, default values are from Ignite `engine.state.metrics` dict.
Args:
engine: Ignite Engine, it can be a trainer, validator or evaluator.
"""
if self.epoch_logger is not None:
self.epoch_logger(engine)
else:
self._default_epoch_log(engine)
def iteration_completed(self, engine: Engine) -> None:
"""
Handler for train or validation/evaluation iteration completed Event.
Track iteration level log.
Args:
engine: Ignite Engine, it can be a trainer, validator or evaluator.
"""
if self.iteration_logger is not None:
self.iteration_logger(engine)
else:
self._default_iteration_log(engine)
def _default_epoch_log(self, engine: Engine) -> None:
"""
Execute epoch level log operation.
Default to track the values from Ignite `engine.state.metrics` dict and
track the values of specified attributes of `engine.state`.
Args:
engine: Ignite Engine, it can be a trainer, validator or evaluator.
"""
log_dict = engine.state.metrics
if not log_dict:
return
current_epoch = self.global_epoch_transform(engine.state.epoch)
self._log_metrics(log_dict, step=current_epoch)
if self.state_attributes is not None:
attrs = {attr: getattr(engine.state, attr, None) for attr in self.state_attributes}
self._log_metrics(attrs, step=current_epoch)
def _default_iteration_log(self, engine: Engine) -> None:
"""
Execute iteration log operation based on Ignite `engine.state.output` data.
Log the values from `self.output_transform(engine.state.output)`.
Since `engine.state.output` is a decollated list and we replicated the loss value for every item
of the decollated list, the default behavior is to track the loss from `output[0]`.
Args:
engine: Ignite Engine, it can be a trainer, validator or evaluator.
"""
loss = self.output_transform(engine.state.output)
if loss is None:
return
if not isinstance(loss, dict):
loss = {self.tag_name: loss.item() if isinstance(loss, torch.Tensor) else loss}
self._log_metrics(loss, step=engine.state.iteration)
# If there is optimizer attr in engine, then record parameters specified in init function.
if hasattr(engine, "optimizer"):
cur_optimizer = engine.optimizer
for param_name in self.optimizer_param_names:
params = {
f"{param_name}_group_{i}": float(param_group[param_name])
for i, param_group in enumerate(cur_optimizer.param_groups)
}
self._log_metrics(params, step=engine.state.iteration)
def _default_dataset_log(self, dataset_dict: Mapping[str, Dataset] | None) -> None:
"""
Execute dataset log operation based on the input dataset_dict. The dataset_dict should have a format
like:
{
"dataset_name0": dataset0,
"dataset_name1": dataset1,
......
}
The keys stand for names of datasets, which will be logged as prefixes of dataset names in MLFlow.
The values are PyTorch datasets from which sample names are abstracted to build a Pandas DataFrame.
If the input dataset_dict is None, this function will directly return and do nothing.
To use this function, every sample in the input datasets must contain keys specified by the `dataset_keys`
parameter.
This function will log a PandasDataset to MLFlow inputs, generated from the Pandas DataFrame.
For more details about PandasDataset, please refer to this link:
https://mlflow.org/docs/latest/python_api/mlflow.data.html#mlflow.data.pandas_dataset.PandasDataset
Please note that it may take a while to record the dataset if it has too many samples.
Args:
dataset_dict: a dictionary in which the key is the name of the dataset and the value is a PyTorch
dataset, that needs to be recorded.
"""
if dataset_dict is None:
return
elif len(dataset_dict) == 0:
warnings.warn("There is no dataset to log!")
# Log datasets to MLFlow one by one.
for dataset_type, dataset in dataset_dict.items():
if dataset is None:
raise AttributeError(f"The {dataset_type} dataset of is None. Cannot record it by MLFlow.")
sample_dict: dict[str, list[str]] = {}
dataset_samples = getattr(dataset, "data", [])
for sample in tqdm(dataset_samples, f"Recording the {dataset_type} dataset"):
for key in self.dataset_keys:
if key not in sample_dict:
sample_dict[key] = []
if key in sample:
value_to_log = sample[key]
else:
raise KeyError(f"Unexpect key '{key}' in the sample.")
if not isinstance(value_to_log, str):
warnings.warn(
f"Expected type string, got type {type(value_to_log)} of the {key} name."
"May log an empty dataset in MLFlow"
)
else:
sample_dict[key].append(value_to_log)
self._log_dataset(sample_dict, dataset_type)