Skip to content

Commit 61dc483

Browse files
refactor: Improve code readability by formatting long lines and updating subprocess path
1 parent 4200fd2 commit 61dc483

File tree

1 file changed

+20
-6
lines changed

1 file changed

+20
-6
lines changed

app/temp/qdrant_search_tool.py

Lines changed: 20 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -56,7 +56,9 @@ class QdrantVectorSearchTool(BaseTool):
5656
openai_client: Any = None # Added for lazy initialization
5757
openai_async_client: Any = None # Added for lazy initialization
5858
name: str = "QdrantVectorSearchTool"
59-
description: str = "A tool to search the Qdrant database for relevant information on internal documents."
59+
description: str = (
60+
"A tool to search the Qdrant database for relevant information on internal documents."
61+
)
6062
args_schema: type[BaseModel] = QdrantToolSchema
6163
query: str | None = None
6264
filter_by: str | None = None
@@ -97,7 +99,7 @@ def __init__(self, **kwargs):
9799
):
98100
import subprocess
99101

100-
subprocess.run(["uv", "add", "qdrant-client"], check=True)
102+
subprocess.run(["/usr/bin/uv", "add", "qdrant-client"], check=True)
101103
else:
102104
raise ImportError(
103105
"The 'qdrant-client' package is required to use the QdrantVectorSearchTool. "
@@ -130,7 +132,11 @@ def _run(
130132
# Create filter if filter parameters are provided
131133
search_filter = None
132134
if filter_by and filter_value:
133-
search_filter = Filter(must=[FieldCondition(key=filter_by, match=MatchValue(value=filter_value))])
135+
search_filter = Filter(
136+
must=[
137+
FieldCondition(key=filter_by, match=MatchValue(value=filter_value))
138+
]
139+
)
134140

135141
# Search in Qdrant using the built-in query method
136142
query_vector = (
@@ -214,11 +220,17 @@ async def _arun(
214220
# Create filter if filter parameters are provided
215221
search_filter = None
216222
if filter_by and filter_value:
217-
search_filter = Filter(must=[FieldCondition(key=filter_by, match=MatchValue(value=filter_value))])
223+
search_filter = Filter(
224+
must=[
225+
FieldCondition(key=filter_by, match=MatchValue(value=filter_value))
226+
]
227+
)
218228

219229
# Search in Qdrant using the built-in query method
220230
query_vector = (
221-
await self._vectorize_query_async(query, embedding_model="text-embedding-3-large")
231+
await self._vectorize_query_async(
232+
query, embedding_model="text-embedding-3-large"
233+
)
222234
if not self.custom_embedding_fn
223235
else self.custom_embedding_fn(query)
224236
)
@@ -243,7 +255,9 @@ async def _arun(
243255

244256
return json.dumps(results, indent=2)
245257

246-
async def _vectorize_query_async(self, query: str, embedding_model: str) -> list[float]:
258+
async def _vectorize_query_async(
259+
self, query: str, embedding_model: str
260+
) -> list[float]:
247261
"""Default async vectorization function with openai.
248262
249263
Args:

0 commit comments

Comments
 (0)