-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathconversation.py
299 lines (260 loc) · 13 KB
/
conversation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
# conversation.py
import os
import json
import random
import uuid
from api_clients import (
generate_response_openai,
generate_response_claude,
generate_response_groq,
generate_response_gemini,
generate_response_local
)
from google.api_core import exceptions
import google.generativeai as genai
from dotenv import load_dotenv
# Load environment variables from a .env file
load_dotenv()
# Load API keys from environment variables
openai_api_key = os.getenv('OPENAI_API_KEY')
claude_api_key = os.getenv('CLAUDE_API_KEY')
groq_api_key = os.getenv('GROQ_API_KEY')
gemini_api_key = os.getenv('GEMINI_API_KEY')
local_api_url = os.getenv('LOCAL_API_URL')
local_api_model = os.getenv('LOCAL_API_MODEL')
def generate_response(role, message, response_type=None, model_conversation_history=None, config=None, use_openai=False, use_claude=False, use_groq=False, use_gemini=False, use_local=False, gemini_model=None):
"""
Generate a response using the selected AI model.
Args:
role (str): The role of the responder (e.g., user, assistant).
message (str): The message to generate a response for.
response_type (str, optional): The type of response to generate.
model_conversation_history (list, optional): The history of the conversation for the model.
config (dict, optional): Configuration settings.
use_openai (bool): Flag to use OpenAI.
use_claude (bool): Flag to use Claude.
use_groq (bool): Flag to use Groq.
use_gemini (bool): Flag to use Gemini.
use_local (bool): Flag to use local model.
gemini_model (GenerativeModel, optional): The Gemini model object.
Returns:
str: The generated response.
"""
if not isinstance(config['generation_parameters']['max_tokens'], dict):
raise ValueError("config['generation_parameters']['max_tokens'] should be a dictionary")
max_tokens = config['generation_parameters']['max_tokens'].get(response_type or role, config['generation_parameters']['max_tokens']['default'])
if use_openai:
return generate_response_openai(model_conversation_history, role, message, config['openai_details']['model_id'], config['generation_parameters']['temperature'], max_tokens)
elif use_claude:
return generate_response_claude(model_conversation_history, role, message, config['claude_details']['model_id'], config['generation_parameters']['temperature'], max_tokens)
elif use_groq:
return generate_response_groq(model_conversation_history, role, message, config['groq_details']['model_id'], config['generation_parameters']['temperature'], max_tokens)
elif use_gemini:
print(f"Attempting to generate response with Gemini API.")
response = generate_response_gemini(message, gemini_model)
if response is None:
raise exceptions.ResourceExhausted("All Gemini API keys have been exhausted. Please try again later.")
return response
elif use_local:
return generate_response_local(model_conversation_history, role, message, config, max_tokens, response_type)
else:
raise ValueError("No valid AI model selected for response generation.")
def append_conversation_to_json(conversation, output_file, conversation_id):
"""
Append a conversation entry to a JSON file.
Args:
conversation (dict): The conversation entry to append.
output_file (str): Path to the output JSON file.
conversation_id (str): The ID of the conversation.
"""
if not os.path.exists(output_file):
with open(output_file, 'w', encoding='utf-8') as f:
json.dump([], f)
with open(output_file, 'r', encoding='utf-8') as f:
try:
conversations = json.load(f)
except json.JSONDecodeError:
conversations = []
conversations.append(conversation)
with open(output_file, 'w', encoding='utf-8') as f:
json.dump(conversations, f, indent=4)
def generate_and_append_response(role, prompt, model_conversation_history, user_conversation_history, output_file, conversation_id, turn, response_type, name, last_role, config, use_openai, use_claude, use_groq, use_gemini, use_local, gemini_model):
"""
Generate a response and append it to the conversation history.
Args:
role (str): The role of the responder (e.g., user, assistant).
prompt (str): The prompt for generating the response.
model_conversation_history (list): The history of the conversation for the model.
user_conversation_history (list): The history of the user's conversation.
output_file (str): The output file path.
conversation_id (str): The conversation ID.
turn (int): The turn number in the conversation.
response_type (str): The type of response to generate.
name (str): The name of the responder.
last_role (str): The role of the last message in the conversation.
config (dict): Configuration settings.
use_openai (bool): Flag to use OpenAI.
use_claude (bool): Flag to use Claude.
use_groq (bool): Flag to use Groq.
use_gemini (bool): Flag to use Gemini.
use_local (bool): Flag to use local model.
gemini_model (GenerativeModel, optional): The Gemini model object.
Returns:
tuple: The generated response and the new last_role.
"""
print(f"Conversation ID: {conversation_id}, Turn: {turn}, Role: {role}")
print(random.choice(config['synapse_thoughts']))
# Ensure alternating roles for Claude API
if use_claude and role == last_role:
# If the roles would be the same, insert a user message
interim_prompt = f"Based on the last response, what would be a good follow-up question or comment?"
interim_response = generate_response("user", interim_prompt, model_conversation_history=model_conversation_history, config=config, use_claude=use_claude)
model_conversation_history.append({"role": "user", "content": interim_response, "name": "System"})
user_conversation_history.append({"role": "user", "content": interim_response, "name": "System"})
append_conversation_to_json({"role": "user", "name": "System", "content": interim_response, "conversation_id": conversation_id, "turn": turn, "token_count": len(interim_response)}, output_file, conversation_id)
last_role = "user"
response = generate_response(role, prompt, response_type, model_conversation_history, config, use_openai, use_claude, use_groq, use_gemini, use_local, gemini_model)
if response is None:
print(f"Failed to generate {role} response.")
return None, last_role
if name == "Professor":
response = f"🧙🏿♂️: {response}"
model_conversation_history.append({"role": role, "content": response, "name": name})
if role == "user" or name == "Professor":
user_conversation_history.append({"role": role, "content": response, "name": name})
append_conversation_to_json({"role": role, "name": name, "content": response, "conversation_id": conversation_id, "turn": turn, "token_count": len(response)}, output_file, conversation_id)
return response, role
def generate_conversation(note, output_file, config, use_openai, use_claude, use_groq, use_gemini, use_local):
"""
Generate a synthetic conversation based on a user's note.
Args:
note (dict): Note content to base the conversation on.
output_file (str): Path to the output file for saving the conversation.
config (dict): Configuration settings.
use_openai (bool): Flag to use OpenAI.
use_claude (bool): Flag to use Claude.
use_groq (bool): Flag to use Groq.
use_gemini (bool): Flag to use Gemini.
use_local (bool): Flag to use local model.
Returns:
list: The generated conversation history.
"""
model_conversation_history = []
user_conversation_history = []
conversation_id = str(uuid.uuid4())
last_role = "system" # Initialize with system to ensure the first message is from the user
gemini_model = None
if use_gemini:
gemini_model = genai.GenerativeModel(config['gemini_details']['model_id'])
# Initial user problem generation with document access
print(f"Generating user problem for note: {note['filename']}")
user_problem, last_role = generate_and_append_response(
"user",
f"{config['system_prompts']['user_system_prompt']}\n\nDocument:\n{note['content']}\n\n**You are now Joseph!**, and are about to begin your conversation with Prof. Come up with the problem you face based on the provided text, and respond in the first person as Joseph:**",
model_conversation_history,
user_conversation_history,
output_file,
conversation_id,
0,
response_type="user",
name="Joseph",
last_role=last_role,
config=config,
use_openai=use_openai,
use_claude=use_claude,
use_groq=use_groq,
use_gemini=use_gemini,
use_local=use_local,
gemini_model=gemini_model
)
if user_problem is None or not user_problem.strip():
print("Failed to generate user problem or user problem is empty.")
return None
num_turns = random.randint(6, 10) # Randomly choose the number of turns between 6 and 10
for turn in range(1, num_turns + 1):
print(f"Generating CoR response for turn {turn}")
cor_prompt = f"{config['system_prompts']['cor_system_prompt']}\n\nConversation History:\n{model_conversation_history}\n\nFilled-in CoR:"
cor_response, last_role = generate_and_append_response(
"assistant",
cor_prompt,
model_conversation_history,
user_conversation_history,
output_file,
conversation_id,
turn,
response_type="cor",
name="CoR",
last_role=last_role,
config=config,
use_openai=use_openai,
use_claude=use_claude,
use_groq=use_groq,
use_gemini=use_gemini,
use_local=use_local,
gemini_model=gemini_model
)
if cor_response is None or not cor_response.strip():
return model_conversation_history
print(f"Generating Professor Synapse response for turn {turn}")
synapse_prompt = f"{config['system_prompts']['synapse_system_prompt']}\n\nConversation History:\n{model_conversation_history}\n\n🧙🏿♂️:"
synapse_response, last_role = generate_and_append_response(
"assistant",
synapse_prompt,
model_conversation_history,
user_conversation_history,
output_file,
conversation_id,
turn,
response_type="professor_synapse",
name="Professor",
last_role=last_role,
config=config,
use_openai=use_openai,
use_claude=use_claude,
use_groq=use_groq,
use_gemini=use_gemini,
use_local=use_local,
gemini_model=gemini_model
)
if synapse_response is None or not synapse_response.strip():
return model_conversation_history
# User follow-up prompt without document access but using the system prompt and previous user conversation history
user_followup_prompt = f"{config['system_prompts']['user_system_prompt']}\n\nConversation History:\n{user_conversation_history}\n\nBased on Professor Synapse's previous response, ask a specific NEW question that builds upon the information provided and helps deepen your understanding of the topic. Respond in first person as Joseph:"
user_followup_response, last_role = generate_and_append_response(
"user",
user_followup_prompt,
model_conversation_history,
user_conversation_history,
output_file,
conversation_id,
turn,
response_type="user",
name="Joseph",
last_role=last_role,
config=config,
use_openai=use_openai,
use_claude=use_claude,
use_groq=use_groq,
use_gemini=use_gemini,
use_local=use_local,
gemini_model=gemini_model
)
if user_followup_response is None or not user_followup_response.strip():
return model_conversation_history
return model_conversation_history
def format_output(conversation):
"""
Format the output of the conversation.
Args:
conversation (list): The conversation history.
Returns:
list: The formatted conversation history.
"""
return conversation
def finalize_json_output(output_file):
"""
Finalize the JSON output file.
Args:
output_file (str): Path to the output JSON file.
"""
pass