-
Notifications
You must be signed in to change notification settings - Fork 62
/
Copy pathhardnet.py
237 lines (194 loc) · 8.03 KB
/
hardnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
class Flatten(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return x.view(x.data.size(0),-1)
class CombConvLayer(nn.Sequential):
def __init__(self, in_channels, out_channels, kernel=1, stride=1, dropout=0.1, bias=False):
super().__init__()
self.add_module('layer1',ConvLayer(in_channels, out_channels, kernel))
self.add_module('layer2',DWConvLayer(out_channels, out_channels, stride=stride))
def forward(self, x):
return super().forward(x)
class DWConvLayer(nn.Sequential):
def __init__(self, in_channels, out_channels, stride=1, bias=False):
super().__init__()
out_ch = out_channels
groups = in_channels
kernel = 3
#print(kernel, 'x', kernel, 'x', out_channels, 'x', out_channels, 'DepthWise')
self.add_module('dwconv', nn.Conv2d(groups, groups, kernel_size=3,
stride=stride, padding=1, groups=groups, bias=bias))
self.add_module('norm', nn.BatchNorm2d(groups))
def forward(self, x):
return super().forward(x)
class ConvLayer(nn.Sequential):
def __init__(self, in_channels, out_channels, kernel=3, stride=1, dropout=0.1, bias=False):
super().__init__()
out_ch = out_channels
groups = 1
#print(kernel, 'x', kernel, 'x', in_channels, 'x', out_channels)
self.add_module('conv', nn.Conv2d(in_channels, out_ch, kernel_size=kernel,
stride=stride, padding=kernel//2, groups=groups, bias=bias))
self.add_module('norm', nn.BatchNorm2d(out_ch))
self.add_module('relu', nn.ReLU6(True))
def forward(self, x):
return super().forward(x)
class HarDBlock(nn.Module):
def get_link(self, layer, base_ch, growth_rate, grmul):
if layer == 0:
return base_ch, 0, []
out_channels = growth_rate
link = []
for i in range(10):
dv = 2 ** i
if layer % dv == 0:
k = layer - dv
link.append(k)
if i > 0:
out_channels *= grmul
out_channels = int(int(out_channels + 1) / 2) * 2
in_channels = 0
for i in link:
ch,_,_ = self.get_link(i, base_ch, growth_rate, grmul)
in_channels += ch
return out_channels, in_channels, link
def get_out_ch(self):
return self.out_channels
def __init__(self, in_channels, growth_rate, grmul, n_layers, keepBase=False, residual_out=False, dwconv=False):
super().__init__()
self.keepBase = keepBase
self.links = []
layers_ = []
self.out_channels = 0 # if upsample else in_channels
for i in range(n_layers):
outch, inch, link = self.get_link(i+1, in_channels, growth_rate, grmul)
self.links.append(link)
use_relu = residual_out
if dwconv:
layers_.append(CombConvLayer(inch, outch))
else:
layers_.append(ConvLayer(inch, outch))
if (i % 2 == 0) or (i == n_layers - 1):
self.out_channels += outch
#print("Blk out =",self.out_channels)
self.layers = nn.ModuleList(layers_)
def forward(self, x):
layers_ = [x]
for layer in range(len(self.layers)):
link = self.links[layer]
tin = []
for i in link:
tin.append(layers_[i])
if len(tin) > 1:
x = torch.cat(tin, 1)
else:
x = tin[0]
out = self.layers[layer](x)
layers_.append(out)
t = len(layers_)
out_ = []
for i in range(t):
if (i == 0 and self.keepBase) or \
(i == t-1) or (i%2 == 1):
out_.append(layers_[i])
out = torch.cat(out_, 1)
return out
class HarDNet(nn.Module):
def __init__(self, depth_wise=False, arch=85, pretrained=True, weight_path=''):
super().__init__()
first_ch = [32, 64]
second_kernel = 3
max_pool = True
grmul = 1.7
drop_rate = 0.1
#HarDNet68
ch_list = [ 128, 256, 320, 640, 1024]
gr = [ 14, 16, 20, 40,160]
n_layers = [ 8, 16, 16, 16, 4]
downSamp = [ 1, 0, 1, 1, 0]
if arch==85:
#HarDNet85
first_ch = [48, 96]
ch_list = [ 192, 256, 320, 480, 720, 1280]
gr = [ 24, 24, 28, 36, 48, 256]
n_layers = [ 8, 16, 16, 16, 16, 4]
downSamp = [ 1, 0, 1, 0, 1, 0]
drop_rate = 0.2
elif arch==39:
#HarDNet39
first_ch = [24, 48]
ch_list = [ 96, 320, 640, 1024]
grmul = 1.6
gr = [ 16, 20, 64, 160]
n_layers = [ 4, 16, 8, 4]
downSamp = [ 1, 1, 1, 0]
if depth_wise:
second_kernel = 1
max_pool = False
drop_rate = 0.05
blks = len(n_layers)
self.base = nn.ModuleList([])
# First Layer: Standard Conv3x3, Stride=2
self.base.append (
ConvLayer(in_channels=3, out_channels=first_ch[0], kernel=3,
stride=2, bias=False) )
# Second Layer
self.base.append ( ConvLayer(first_ch[0], first_ch[1], kernel=second_kernel) )
# Maxpooling or DWConv3x3 downsampling
if max_pool:
self.base.append(nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
else:
self.base.append ( DWConvLayer(first_ch[1], first_ch[1], stride=2) )
# Build all HarDNet blocks
ch = first_ch[1]
for i in range(blks):
blk = HarDBlock(ch, gr[i], grmul, n_layers[i], dwconv=depth_wise)
ch = blk.get_out_ch()
self.base.append ( blk )
if i == blks-1 and arch == 85:
self.base.append ( nn.Dropout(0.1))
self.base.append ( ConvLayer(ch, ch_list[i], kernel=1) )
ch = ch_list[i]
if downSamp[i] == 1:
if max_pool:
self.base.append(nn.MaxPool2d(kernel_size=2, stride=2))
else:
self.base.append ( DWConvLayer(ch, ch, stride=2) )
ch = ch_list[blks-1]
self.base.append (
nn.Sequential(
nn.AdaptiveAvgPool2d((1,1)),
Flatten(),
nn.Dropout(drop_rate),
nn.Linear(ch, 1000) ))
#print(self.base)
if pretrained:
if hasattr(torch, 'hub'):
if arch == 68 and not depth_wise:
checkpoint = 'https://ping-chao.com/hardnet/hardnet68-5d684880.pth'
elif arch == 85 and not depth_wise:
checkpoint = 'https://ping-chao.com/hardnet/hardnet85-a28faa00.pth'
elif arch == 68 and depth_wise:
checkpoint = 'https://ping-chao.com/hardnet/hardnet68ds-632474d2.pth'
else:
checkpoint = 'https://ping-chao.com/hardnet/hardnet39ds-0e6c6fa9.pth'
self.load_state_dict(torch.hub.load_state_dict_from_url(checkpoint, progress=False))
else:
postfix = 'ds' if depth_wise else ''
weight_file = '%shardnet%d%s.pth'%(weight_path, arch, postfix)
if not os.path.isfile(weight_file):
print(weight_file,'is not found')
exit(0)
weights = torch.load(weight_file)
self.load_state_dict(weights)
postfix = 'DS' if depth_wise else ''
print('ImageNet pretrained weights for HarDNet%d%s is loaded'%(arch, postfix))
def forward(self, x):
for layer in self.base:
x = layer(x)
return x