forked from flyingmutant/rapid
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcollections.go
194 lines (166 loc) · 5.45 KB
/
collections.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
// Copyright 2019 Gregory Petrosyan <gregory.petrosyan@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at https://mozilla.org/MPL/2.0/.
package rapid
import "fmt"
// ID returns its argument as is. ID is a helper for use with [SliceOfDistinct] and similar functions.
func ID[V any](v V) V {
return v
}
// SliceOf is a shorthand for [SliceOfN](elem, -1, -1).
func SliceOf[E any](elem *Generator[E]) *Generator[[]E] {
return SliceOfN(elem, -1, -1)
}
// SliceOfN creates a []E generator. If minLen >= 0, generated slices have minimum length of minLen.
// If maxLen >= 0, generated slices have maximum length of maxLen. SliceOfN panics if maxLen >= 0
// and minLen > maxLen.
func SliceOfN[E any](elem *Generator[E], minLen int, maxLen int) *Generator[[]E] {
assertValidRange(minLen, maxLen)
return newGenerator[[]E](&sliceGen[E, struct{}]{
minLen: minLen,
maxLen: maxLen,
elem: elem,
})
}
// SliceOfDistinct is a shorthand for [SliceOfNDistinct](elem, -1, -1, keyFn).
func SliceOfDistinct[E any, K comparable](elem *Generator[E], keyFn func(E) K) *Generator[[]E] {
return SliceOfNDistinct(elem, -1, -1, keyFn)
}
// SliceOfNDistinct creates a []E generator. Elements of each generated slice are distinct according to keyFn.
// If minLen >= 0, generated slices have minimum length of minLen. If maxLen >= 0, generated slices
// have maximum length of maxLen. SliceOfNDistinct panics if maxLen >= 0 and minLen > maxLen.
// [ID] helper can be used as keyFn to generate slices of distinct comparable elements.
func SliceOfNDistinct[E any, K comparable](elem *Generator[E], minLen int, maxLen int, keyFn func(E) K) *Generator[[]E] {
assertValidRange(minLen, maxLen)
return newGenerator[[]E](&sliceGen[E, K]{
minLen: minLen,
maxLen: maxLen,
elem: elem,
keyFn: keyFn,
})
}
type sliceGen[E any, K comparable] struct {
minLen int
maxLen int
elem *Generator[E]
keyFn func(E) K
}
func (g *sliceGen[E, K]) String() string {
if g.keyFn == nil {
if g.minLen < 0 && g.maxLen < 0 {
return fmt.Sprintf("SliceOf(%v)", g.elem)
} else {
return fmt.Sprintf("SliceOfN(%v, minLen=%v, maxLen=%v)", g.elem, g.minLen, g.maxLen)
}
} else {
if g.minLen < 0 && g.maxLen < 0 {
return fmt.Sprintf("SliceOfDistinct(%v, key=%T)", g.elem, g.keyFn)
} else {
return fmt.Sprintf("SliceOfNDistinct(%v, minLen=%v, maxLen=%v, key=%T)", g.elem, g.minLen, g.maxLen, g.keyFn)
}
}
}
func (g *sliceGen[E, K]) value(t *T) []E {
repeat := newRepeat(g.minLen, g.maxLen, -1, g.elem.String())
var seen map[K]struct{}
if g.keyFn != nil {
seen = make(map[K]struct{}, repeat.avg())
}
sl := make([]E, 0, repeat.avg())
for repeat.more(t.s) {
e := g.elem.value(t)
if g.keyFn == nil {
sl = append(sl, e)
} else {
k := g.keyFn(e)
if _, ok := seen[k]; ok {
repeat.reject()
} else {
seen[k] = struct{}{}
sl = append(sl, e)
}
}
}
return sl
}
// MapOf is a shorthand for [MapOfN](key, val, -1, -1).
func MapOf[K comparable, V any](key *Generator[K], val *Generator[V]) *Generator[map[K]V] {
return MapOfN(key, val, -1, -1)
}
// MapOfN creates a map[K]V generator. If minLen >= 0, generated maps have minimum length of minLen.
// If maxLen >= 0, generated maps have maximum length of maxLen. MapOfN panics if maxLen >= 0
// and minLen > maxLen.
func MapOfN[K comparable, V any](key *Generator[K], val *Generator[V], minLen int, maxLen int) *Generator[map[K]V] {
assertValidRange(minLen, maxLen)
return newGenerator[map[K]V](&mapGen[K, V]{
minLen: minLen,
maxLen: maxLen,
key: key,
val: val,
})
}
// MapOfValues is a shorthand for [MapOfNValues](val, -1, -1, keyFn).
func MapOfValues[K comparable, V any](val *Generator[V], keyFn func(V) K) *Generator[map[K]V] {
return MapOfNValues(val, -1, -1, keyFn)
}
// MapOfNValues creates a map[K]V generator, where keys are generated by applying keyFn to values.
// If minLen >= 0, generated maps have minimum length of minLen. If maxLen >= 0, generated maps
// have maximum length of maxLen. MapOfNValues panics if maxLen >= 0 and minLen > maxLen.
func MapOfNValues[K comparable, V any](val *Generator[V], minLen int, maxLen int, keyFn func(V) K) *Generator[map[K]V] {
assertValidRange(minLen, maxLen)
return newGenerator[map[K]V](&mapGen[K, V]{
minLen: minLen,
maxLen: maxLen,
val: val,
keyFn: keyFn,
})
}
type mapGen[K comparable, V any] struct {
minLen int
maxLen int
key *Generator[K]
val *Generator[V]
keyFn func(V) K
}
func (g *mapGen[K, V]) String() string {
if g.key != nil {
if g.minLen < 0 && g.maxLen < 0 {
return fmt.Sprintf("MapOf(%v, %v)", g.key, g.val)
} else {
return fmt.Sprintf("MapOfN(%v, %v, minLen=%v, maxLen=%v)", g.key, g.val, g.minLen, g.maxLen)
}
} else {
if g.minLen < 0 && g.maxLen < 0 {
return fmt.Sprintf("MapOfValues(%v, key=%T)", g.val, g.keyFn)
} else {
return fmt.Sprintf("MapOfNValues(%v, minLen=%v, maxLen=%v, key=%T)", g.val, g.minLen, g.maxLen, g.keyFn)
}
}
}
func (g *mapGen[K, V]) value(t *T) map[K]V {
label := g.val.String()
if g.key != nil {
label = g.key.String() + "," + label
}
repeat := newRepeat(g.minLen, g.maxLen, -1, label)
m := make(map[K]V, repeat.avg())
for repeat.more(t.s) {
var k K
var v V
if g.key != nil {
k = g.key.value(t)
v = g.val.value(t)
} else {
v = g.val.value(t)
k = g.keyFn(v)
}
if _, ok := m[k]; ok {
repeat.reject()
} else {
m[k] = v
}
}
return m
}