-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy paththumos_features.py
161 lines (123 loc) · 6.01 KB
/
thumos_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import torch.utils.data as data
import os
import csv
import json
import numpy as np
import pandas as pd
import torch
import pdb
import time
import random
import utils
import config
class ThumosFeature(data.Dataset):
def __init__(self, data_path, mode, modal, feature_fps, num_segments, sampling, seed=-1, supervision='point'):
if seed >= 0:
utils.set_seed(seed)
self.mode = mode
self.modal = modal
self.feature_fps = feature_fps
self.num_segments = num_segments
self.sampling = sampling
self.supervision = supervision
if self.modal == 'all':
self.feature_path = []
for _modal in ['rgb', 'flow']:
self.feature_path.append(os.path.join(data_path, 'features', self.mode, _modal))
else:
self.feature_path = os.path.join(data_path, 'features', self.mode, self.modal)
split_path = os.path.join(data_path, 'split_{}.txt'.format(self.mode))
split_file = open(split_path, 'r')
self.vid_list = []
for line in split_file:
self.vid_list.append(line.strip())
split_file.close()
self.fps_dict = json.load(open(os.path.join(data_path, 'fps_dict.json')))
anno_path = os.path.join(data_path, 'gt.json')
anno_file = open(anno_path, 'r')
self.anno = json.load(anno_file)
anno_file.close()
self.class_name_to_idx = dict((v, k) for k, v in config.class_dict.items())
self.num_classes = len(self.class_name_to_idx.keys())
if self.supervision == 'point':
self.point_anno = pd.read_csv(os.path.join(data_path, 'point_gaussian', 'point_labels.csv'))
self.stored_info_all = {'new_dense_anno': [-1] * len(self.vid_list), 'sequence_score': [-1] * len(self.vid_list)}
def __len__(self):
return len(self.vid_list)
def __getitem__(self, index):
data, vid_num_seg, sample_idx = self.get_data(index)
label, point_anno = self.get_label(index, vid_num_seg, sample_idx)
stored_info = {'new_dense_anno': self.stored_info_all['new_dense_anno'][index], 'sequence_score': self.stored_info_all['sequence_score'][index]}
return index, data, label, point_anno, stored_info, self.vid_list[index], vid_num_seg
def get_data(self, index):
vid_name = self.vid_list[index]
vid_num_seg = 0
if self.modal == 'all':
rgb_feature = np.load(os.path.join(self.feature_path[0],
vid_name + '.npy')).astype(np.float32)
flow_feature = np.load(os.path.join(self.feature_path[1],
vid_name + '.npy')).astype(np.float32)
vid_num_seg = rgb_feature.shape[0]
if self.sampling == 'random':
sample_idx = self.random_perturb(vid_num_seg)
elif self.sampling == 'uniform':
sample_idx = self.uniform_sampling(vid_num_seg)
else:
raise AssertionError('Not supported sampling !')
rgb_feature = rgb_feature[sample_idx]
flow_feature = flow_feature[sample_idx]
feature = np.concatenate((rgb_feature, flow_feature), axis=1)
else:
feature = np.load(os.path.join(self.feature_path,
vid_name + '.npy')).astype(np.float32)
vid_num_seg = feature.shape[0]
if self.sampling == 'random':
sample_idx = self.random_perturb(vid_num_seg)
elif self.sampling == 'uniform':
sample_idx = self.uniform_sampling(vid_num_seg)
else:
raise AssertionError('Not supported sampling !')
feature = feature[sample_idx]
return torch.from_numpy(feature), vid_num_seg, sample_idx
def get_label(self, index, vid_num_seg, sample_idx):
vid_name = self.vid_list[index]
anno_list = self.anno['database'][vid_name]['annotations']
label = np.zeros([self.num_classes], dtype=np.float32)
classwise_anno = [[]] * self.num_classes
for _anno in anno_list:
label[self.class_name_to_idx[_anno['label']]] = 1
classwise_anno[self.class_name_to_idx[_anno['label']]].append(_anno)
if self.supervision == 'video':
return label, torch.Tensor(0)
elif self.supervision == 'point':
temp_anno = np.zeros([vid_num_seg, self.num_classes], dtype=np.float32)
t_factor = self.feature_fps / (self.fps_dict[vid_name] * 16)
temp_df = self.point_anno[self.point_anno["video_id"] == vid_name][['point', 'class_index']]
for key in temp_df['point'].keys():
point = temp_df['point'][key]
class_idx = temp_df['class_index'][key]
temp_anno[int(point * t_factor)][class_idx] = 1
point_label = temp_anno[sample_idx, :]
return label, torch.from_numpy(point_label)
def random_perturb(self, length):
if self.num_segments == length or self.num_segments == -1:
return np.arange(length).astype(int)
samples = np.arange(self.num_segments) * length / self.num_segments
for i in range(self.num_segments):
if i < self.num_segments - 1:
if int(samples[i]) != int(samples[i + 1]):
samples[i] = np.random.choice(range(int(samples[i]), int(samples[i + 1]) + 1))
else:
samples[i] = int(samples[i])
else:
if int(samples[i]) < length - 1:
samples[i] = np.random.choice(range(int(samples[i]), length))
else:
samples[i] = int(samples[i])
return samples.astype(int)
def uniform_sampling(self, length):
if length <= self.num_segments or self.num_segments == -1:
return np.arange(length).astype(int)
samples = np.arange(self.num_segments) * length / self.num_segments
samples = np.floor(samples)
return samples.astype(int)