Skip to content

Latest commit

 

History

History
61 lines (44 loc) · 2.68 KB

compare_with_phi-3_vision.md

File metadata and controls

61 lines (44 loc) · 2.68 KB

Phi-3-vision-128K-Instruct vs MiniCPM-Llama3-V 2.5

Comparison results of Phi-3-vision-128K-Instruct and MiniCPM-Llama3-V 2.5, regarding the model size, hardware requirements, and performances.

我们提供了从模型参数、硬件需求、性能指标等方面对比 Phi-3-vision-128K-Instruct 和 MiniCPM-Llama3-V 2.5 的结果。

Hardeware Requirements (硬件需求)

With int4 quantization, MiniCPM-Llama3-V 2.5 delivers smooth inference with only 8GB of GPU memory.

通过 int4 量化,MiniCPM-Llama3-V 2.5 仅需 8GB 显存即可推理。

Model(模型) GPU Memory(显存)
MiniCPM-Llama3-V 2.5 19 GB
Phi-3-vision-128K-Instruct 12 GB
MiniCPM-Llama3-V 2.5 (int4) 8 GB

Model Size and Peformance (模型参数和性能)

In most benchmarks, MiniCPM-Llama3-V 2.5 achieves better performance compared with Phi-3-vision-128K-Instruct. Moreover, MiniCPM-Llama3-V 2.5 also exhibits lower latency and better throughtput even without quantization.

在大多数评测集上, MiniCPM-Llama3-V 2.5 相比于 Phi-3-vision-128K-Instruct 都展现出了更优的性能表现。 即使未经量化,MiniCPM-Llama3-V 2.5 的推理延迟和吞吐率也都更具优势

Phi-3-vision-128K-Instruct MiniCPM-Llama3-V 2.5
Size(参数) 4B 8B
First Token Latency(首token延迟)2 L: 330ms, M: 330ms, H: 330ms L: 48ms, M: 145ms, H: 278ms
Throughtput(吞吐率)2 30 tokens/s 41 tokens/s
OpenCompass 2024/05 53.7 58.8
OCRBench 639.0 725.0
RealworldQA 58.8 63.5
TextVQA 72.2 76.6
ScienceQA 90.8 89.0
POPE 83.4 87.2
MathVista 44.5 54.3
MMStar 47.4 51.8
LLaVA Bench 64.2 86.7
AI2D 76.7 78.4
1: L(ow): 448pxl, M(edium): 896pxl, H(igh): 1344pxl input images.
1. Evaluation environment: A800 GPU, flash-attn=2.4.3, batch-size=1.

Multilingual Capabilities

MiniCPM-Llama3-V 2.5 exhibits stronger multilingual capabilities compared with Phi-3-vision-128K-Instruct on LLaVA Bench.

MiniCPM-Llama3-V 2.5 在对话和推理评测榜单 LLaVA Bench 上展现出了比 Phi-3-vision-128K-Instruct 更强的多语言的性能


Evaluation results of LLaVABench in multiple languages
多语言LLaVA Bench评测结果