Skip to content

Commit f3603ce

Browse files
committed
Merge branch 'TeXNotes' of github.com:PhotonYan/MachineLearningCourse2025 into TeXNotes
2 parents 97879e9 + 86dcdd8 commit f3603ce

File tree

2 files changed

+6
-2
lines changed

2 files changed

+6
-2
lines changed

README.md

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -23,3 +23,7 @@ https://disk.pku.edu.cn/link/AA61A92A21D0404370B153E970F17D6F6F
2323
2025.09.17 【通知】第一次课后练习已发布,DDL为10.1(周三)晚11:59,请大家按时完成
2424

2525
2025.10.15 【通知】课后练习2、3已经发布,截止时间为10.29晚11:59,注意一次作业有四道题。**为方便助教批改以及给大家反馈,请大家提交一个【pdf文件】,不要直接提交多张图片或者提交word**
26+
27+
**期末考试信息:
28+
2026年1月7日 周三 下午14:00-16:00 一教101
29+
请大家按时参加!注意cheating sheet需要纸笔手写,一页A4正反面,不能打印平板,到时助教会检查。**

notes/2024/generative-model.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -339,7 +339,7 @@ $$
339339
$$
340340
\begin{aligned}
341341
\mathrm{ELBO} &= \log p_{\theta}(x_0) - \mathrm{KL} \\
342-
&= \int_{x_{1:T}}q(x_{1:T}\mid x_0) \log p_{\theta}(x_0) \mathrm{d}x_{1:T} - \int_{x_{1:T}} q(x_{1:T}\mid x_0) \frac{q(x_{1:T}\mid x_0)}{p_{\theta}(x_{1:T}\mid x_0)} \mathrm{d} x_{1:T}\\
342+
&= \int_{x_{1:T}}q(x_{1:T}\mid x_0) \log p_{\theta}(x_0) \mathrm{d}x_{1:T} - \int_{x_{1:T}} q(x_{1:T}\mid x_0) \log \frac{q(x_{1:T}\mid x_0)}{p_{\theta}(x_{1:T}\mid x_0)} \mathrm{d} x_{1:T}\\
343343
&= \int_{x_{1:T}} q(x_{1:T}\mid x_0) \log \frac{p_{\theta}(x_{0:T})}{q(x_{1:T}\mid x_0)}\mathrm{d} x_{1:T}\\
344344
&= \int_{x_{1:T}} q(x_{1:T}\mid x_0) \log \frac{p(x_T) \prod_{t \in [T]} p_{\theta}(x_{t-1}\mid x_t) }{\prod_{t \in [T]} q(x_t\mid x_{t-1}) }\mathrm{d} x_{1:T}\\
345345
&= \mathbb{E}_{x_{1:T} \sim q(x_{1:T}\mid x_0)}\left[ \log p(x_T) + \sum_{t \in [T]}\log \frac{p_{\theta}(x_{t-1}\mid x_t)}{q(x_t\mid x_{t-1})} \right]
@@ -449,7 +449,7 @@ $$
449449
然后把 $q(x_{t-1},x_t\mid x_0)$ 拆成 $q(x_{t-1}\mid x_t,x_0)\cdot q(x_t\mid x_0)$,并将对 $x_t$ 的积分拿到最外面:
450450

451451
$$
452-
\int_{x_t} q(x_t\mid x_0)\int_{x_{t-1}} q(x_{t-1}\mid x_t,x_0) \log \frac{q(x_{t-1}\mid x_t,x_0)}{p_{\theta}(x_{t-1},x_t)}\mathrm{d}x_{t-1}\mathrm{d}x_t
452+
\int_{x_t} q(x_t\mid x_0)\int_{x_{t-1}} q(x_{t-1}\mid x_t,x_0) \log \frac{q(x_{t-1}\mid x_t,x_0)}{p_{\theta}(x_{t-1} \mid x_t)}\mathrm{d}x_{t-1}\mathrm{d}x_t
453453
$$
454454

455455
KL 散度的形式这就出来了!

0 commit comments

Comments
 (0)