-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCyclistic Data Cleaning and Analysis Script.R
189 lines (155 loc) · 9.39 KB
/
Cyclistic Data Cleaning and Analysis Script.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
getwd()
install.packages("tidyverse")
library(tidyverse)
library(ggplot2)
library(lubridate)
setwd("\\Users\\phelelani.FERNRIDGE\\Desktop\\to mve 2")
#Import the CSV's into the variables / data frames
q4_2019 <- read_csv("Divvy_Trips_2019_Q4.csv")
q3_2019 <- read_csv("Divvy_Trips_2019_Q3.csv")
q2_2019 <- read_csv("Divvy_Trips_2019_Q2.csv")
q1_2020 <- read_csv("Divvy_Trips_2020_Q1.csv")
#make sure all the columns of each table / data frame are aligned i.e., same structure
colnames(q4_2019)
colnames(q3_2019)
colnames(q2_2019)
colnames(q1_2020)
# Rename columns to make them consistent with q1_2020 (as this will be the supposed going-forward table design for Divvy)
(q4_2019 <- rename(q4_2019
,ride_id = trip_id
,rideable_type = bikeid
,started_at = start_time
,ended_at = end_time
,start_station_name = from_station_name
,start_station_id = from_station_id
,end_station_name = to_station_name
,end_station_id = to_station_id
,member_casual = usertype))
(q3_2019 <- rename(q3_2019
,ride_id = trip_id
,rideable_type = bikeid
,started_at = start_time
,ended_at = end_time
,start_station_name = from_station_name
,start_station_id = from_station_id
,end_station_name = to_station_name
,end_station_id = to_station_id
,member_casual = usertype))
(q2_2019 <- rename(q2_2019
,ride_id = "01 - Rental Details Rental ID"
,rideable_type = "01 - Rental Details Bike ID"
,started_at = "01 - Rental Details Local Start Time"
,ended_at = "01 - Rental Details Local End Time"
,start_station_name = "03 - Rental Start Station Name"
,start_station_id = "03 - Rental Start Station ID"
,end_station_name = "02 - Rental End Station Name"
,end_station_id = "02 - Rental End Station ID"
,member_casual = "User Type"))
# Inspect the dataframes and look for incongruencies
str(q1_2020)
str(q4_2019)
str(q3_2019)
str(q2_2019)
# Convert ride_id and rideable_type to character so that they can stack correctly
q4_2019 <- mutate(q4_2019, ride_id = as.character(ride_id)
,rideable_type = as.character(rideable_type))
q3_2019 <- mutate(q3_2019, ride_id = as.character(ride_id)
,rideable_type = as.character(rideable_type))
q2_2019 <- mutate(q2_2019, ride_id = as.character(ride_id)
,rideable_type = as.character(rideable_type))
# Stack individual quarter's data frames into one big data frame
all_trips <- bind_rows(q2_2019, q3_2019, q4_2019, q1_2020)
# Remove lat, long, birthyear, and gender fields as this data was dropped beginning in 2020
all_trips <- all_trips %>%
select(-c(start_lat, start_lng, end_lat, end_lng, birthyear, gender, "01 - Rental Details Duration In Seconds Uncapped", "05 - Member Details Member Birthday Year", "Member Gender", "tripduration"))
#======================================================
# STEP 3: CLEAN UP AND ADD DATA TO PREPARE FOR ANALYSIS
#======================================================
# Inspect the new table that has been created
colnames(all_trips) #List of column names
nrow(all_trips) #How many rows are in data frame?
dim(all_trips) #Dimensions of the data frame?
head(all_trips) #See the first 6 rows of data frame. Also tail(all_trips)
str(all_trips) #See list of columns and data types (numeric, character, etc)
summary(all_trips) #Statistical summary of data. Mainly for numerics
# There are a few problems we will need to fix:
# (1) In the "member_casual" column, there are two names for members ("member" and "Subscriber") and two names for casual riders ("Customer" and "casual"). We will need to consolidate that from four to two labels.
# (2) The data can only be aggregated at the ride-level, which is too granular. We will want to add some additional columns of data -- such as day, month, year -- that provide additional opportunities to aggregate the data.
# (3) We will want to add a calculated field for length of ride since the 2020Q1 data did not have the "tripduration" column. We will add "ride_length" to the entire dataframe for consistency.
# (4) There are some rides where tripduration shows up as negative, including several hundred rides where Divvy took bikes out of circulation for Quality Control reasons. We will want to delete these rides.
# In the "member_casual" column, replace "Subscriber" with "member" and "Customer" with "casual"
# Begin by seeing how many observations fall under each usertype
table(all_trips$member_casual)
# Reassign to the desired values (we will go with the current 2020 labels)
all_trips <- all_trips %>%
mutate(member_casual = recode(member_casual
,"Subscriber" = "member"
,"Customer" = "casual"))
# Check to make sure the proper number of observations were reassigned
table(all_trips$member_casual)
# Add columns that list the date, month, day, and year of each ride
# This will allow us to aggregate ride data for each month, day, or year ... before completing these operations we could only aggregate at the ride level
# https://www.statmethods.net/input/dates.html more on date formats in R found at that link
all_trips$date <- as.Date(all_trips$started_at) #The default format is yyyy-mm-dd
all_trips$month <- format(as.Date(all_trips$date), "%m")
all_trips$day <- format(as.Date(all_trips$date), "%d")
all_trips$year <- format(as.Date(all_trips$date), "%Y")
all_trips$day_of_week <- format(as.Date(all_trips$date), "%A")
# Add a "ride_length" calculation to all_trips (in seconds)
all_trips$ride_length <- difftime(all_trips$ended_at,all_trips$started_at)
# Inspect the structure of the columns
str(all_trips)
# Convert "ride_length" from Factor to numeric so we can run calculations on the data
is.factor(all_trips$ride_length)
all_trips$ride_length <- as.numeric(as.character(all_trips$ride_length))
is.numeric(all_trips$ride_length)
# Remove "bad" data
# The dataframe includes a few hundred entries when bikes were taken out of docks and checked for quality by Divvy or ride_length was negative
# We will create a new version of the dataframe (v2) since data is being removed
all_trips_v2 <- all_trips[!(all_trips$start_station_name == "HQ QR" | all_trips$ride_length<0),]
#=====================================
# STEP 4: CONDUCT DESCRIPTIVE ANALYSIS
#=====================================
# Descriptive analysis on ride_length (all figures in seconds)
mean(all_trips_v2$ride_length) #straight average (total ride length / rides)
median(all_trips_v2$ride_length) #midpoint number in the ascending array of ride lengths
max(all_trips_v2$ride_length) #longest ride
min(all_trips_v2$ride_length) #shortest ride
# You can condense the four lines above to one line using summary() on the specific attribute
summary(all_trips_v2$ride_length)
# Compare members and casual users
aggregate(all_trips_v2$ride_length ~ all_trips_v2$member_casual, FUN = mean)
aggregate(all_trips_v2$ride_length ~ all_trips_v2$member_casual, FUN = median)
aggregate(all_trips_v2$ride_length ~ all_trips_v2$member_casual, FUN = max)
aggregate(all_trips_v2$ride_length ~ all_trips_v2$member_casual, FUN = min)
# See the average ride time by each day for members vs casual users
aggregate(all_trips_v2$ride_length ~ all_trips_v2$member_casual + all_trips_v2$day_of_week, FUN = mean)
# Notice that the days of the week are out of order. Let's fix that.
all_trips_v2$day_of_week <- ordered(all_trips_v2$day_of_week, levels=c("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday"))
# Now, let's run the average ride time by each day for members vs casual users
aggregate(all_trips_v2$ride_length ~ all_trips_v2$member_casual + all_trips_v2$day_of_week, FUN = mean)
# analyze ridership data by type and weekday
all_trips_v2 %>%
mutate(weekday = wday(started_at, label = TRUE)) %>% #creates weekday field using wday()
group_by(member_casual, weekday) %>% #groups by usertype and weekday
summarise(number_of_rides = n() #calculates the number of rides and average duration
,average_duration = mean(ride_length)) %>% # calculates the average duration
arrange(member_casual, weekday) # sorts
# Let's visualize the number of rides by rider type
all_trips_v2 %>%
mutate(weekday = wday(started_at, label = TRUE)) %>%
group_by(member_casual, weekday) %>%
summarise(number_of_rides = n()
,average_duration = mean(ride_length)) %>%
arrange(member_casual, weekday) %>%
ggplot(aes(x = weekday, y = number_of_rides, fill = member_casual)) +
geom_col(position = "dodge")
# Let's create a visualization for average duration
all_trips_v2 %>%
mutate(weekday = wday(started_at, label = TRUE)) %>%
group_by(member_casual, weekday) %>%
summarise(number_of_rides = n()
,average_duration = mean(ride_length)) %>%
arrange(member_casual, weekday) %>%
ggplot(aes(x = weekday, y = average_duration, fill = member_casual)) +
geom_col(position = "dodge")