-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVNet.py
304 lines (230 loc) · 11.6 KB
/
VNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import torch
from torch import nn
"""
modified version from Wu, Yicheng, et al. "Coactseg: Learning from heterogeneous data for new multiple sclerosis lesion segmentation."
International conference on medical image computing and computer-assisted intervention. Cham: Springer Nature Switzerland, 2023.
"""
class ConvBlock(nn.Module):
def __init__(self, n_stages, n_filters_in, n_filters_out, normalization='none'):
super(ConvBlock, self).__init__()
ops = []
input_channel = n_filters_in
for i in range(n_stages):
ops.append(nn.Conv3d(input_channel, n_filters_out, 3, padding=1))
if normalization == 'batchnorm':
ops.append(nn.BatchNorm3d(n_filters_out))
elif normalization == 'groupnorm':
ops.append(nn.GroupNorm(num_groups=16, num_channels=n_filters_out))
elif normalization == 'instancenorm':
ops.append(nn.InstanceNorm3d(n_filters_out))
elif normalization != 'none':
assert False
ops.append(nn.ReLU(inplace=True))
input_channel = n_filters_out
self.conv = nn.Sequential(*ops)
def forward(self, x):
x = self.conv(x)
return x
class ResidualConvBlock(nn.Module):
def __init__(self, n_stages, n_filters_in, n_filters_out, normalization='none'):
super(ResidualConvBlock, self).__init__()
ops = []
input_channel = n_filters_in
for i in range(n_stages):
ops.append(nn.Conv3d(input_channel, n_filters_out, 3, padding=1))
if normalization == 'batchnorm':
ops.append(nn.BatchNorm3d(n_filters_out))
elif normalization == 'groupnorm':
ops.append(nn.GroupNorm(num_groups=16, num_channels=n_filters_out))
elif normalization == 'instancenorm':
ops.append(nn.InstanceNorm3d(n_filters_out))
elif normalization != 'none':
assert False
if i != n_stages-1:
ops.append(nn.ReLU(inplace=True))
input_channel = n_filters_out
if n_filters_in != n_filters_out:
self.conv_on_input = nn.Sequential(
nn.Conv3d(n_filters_in, n_filters_out, 3, 1, 1),
nn.BatchNorm3d(n_filters_out)
)
self.conv = nn.Sequential(*ops)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
x = (self.conv(x) + x if hasattr(self, 'conv_on_input') is False else self.conv_on_input(x));
x = self.relu(x)
return x
class DownsamplingConvBlock(nn.Module):
def __init__(self, n_filters_in, n_filters_out, stride=2, normalization='none'):
super(DownsamplingConvBlock, self).__init__()
ops = []
if normalization != 'none':
ops.append(nn.Conv3d(n_filters_in, n_filters_out, stride, padding=0, stride=stride))
if normalization == 'batchnorm':
ops.append(nn.BatchNorm3d(n_filters_out))
elif normalization == 'groupnorm':
ops.append(nn.GroupNorm(num_groups=16, num_channels=n_filters_out))
elif normalization == 'instancenorm':
ops.append(nn.InstanceNorm3d(n_filters_out))
else:
assert False
else:
ops.append(nn.Conv3d(n_filters_in, n_filters_out, stride, padding=0, stride=stride))
ops.append(nn.ReLU(inplace=True))
self.conv = nn.Sequential(*ops)
def forward(self, x):
x = self.conv(x)
return x
class UpSampling(nn.Module):
def __init__(self, n_filters_in, n_filters_out, stride=2, normalization='none', mode_upsampling = 1):
super(UpSampling, self).__init__()
ops = []
if mode_upsampling == 0:
ops.append(nn.ConvTranspose3d(n_filters_in, n_filters_out, stride, padding=0, stride=stride))
if mode_upsampling == 1:
ops.append(nn.Upsample(scale_factor=stride, mode="trilinear", align_corners=False))
ops.append(nn.Conv3d(n_filters_in, n_filters_out, kernel_size=3, padding=1))
elif mode_upsampling == 2:
ops.append(nn.Upsample(scale_factor=stride, mode="nearest"))
ops.append(nn.Conv3d(n_filters_in, n_filters_out, kernel_size=3, padding=1))
if normalization == 'batchnorm':
ops.append(nn.BatchNorm3d(n_filters_out))
elif normalization == 'groupnorm':
ops.append(nn.GroupNorm(num_groups=16, num_channels=n_filters_out))
elif normalization == 'instancenorm':
ops.append(nn.InstanceNorm3d(n_filters_out))
elif normalization != 'none':
assert False
ops.append(nn.ReLU(inplace=True))
self.conv = nn.Sequential(*ops)
def forward(self, x):
x = self.conv(x)
return x
class Encoder(nn.Module):
def __init__(self, n_channels=3, n_classes=2, n_filters=16, normalization='none', has_dropout=False, has_residual=False):
super(Encoder, self).__init__()
self.has_dropout = has_dropout
convBlock = ConvBlock if not has_residual else ResidualConvBlock
self.block_one = convBlock(1, n_channels, n_filters, normalization=normalization)
self.block_one_dw = DownsamplingConvBlock(n_filters, 2 * n_filters, normalization=normalization)
self.block_two = convBlock(2, n_filters * 2, n_filters * 2, normalization=normalization)
self.block_two_dw = DownsamplingConvBlock(n_filters * 2, n_filters * 4, normalization=normalization)
self.block_three = convBlock(3, n_filters * 4, n_filters * 4, normalization=normalization)
self.block_three_dw = DownsamplingConvBlock(n_filters * 4, n_filters * 8, normalization=normalization)
self.block_four = convBlock(3, n_filters * 8, n_filters * 8, normalization=normalization)
self.block_four_dw = DownsamplingConvBlock(n_filters * 8, n_filters * 16, normalization=normalization)
self.block_five = convBlock(3, n_filters * 16, n_filters * 16, normalization=normalization)
self.dropout = nn.Dropout3d(p=0.5, inplace=False)
def forward(self, input):
x1 = self.block_one(input)
x1_dw = self.block_one_dw(x1)
x2 = self.block_two(x1_dw)
x2_dw = self.block_two_dw(x2)
x3 = self.block_three(x2_dw)
x3_dw = self.block_three_dw(x3)
x4 = self.block_four(x3_dw)
x4_dw = self.block_four_dw(x4)
x5 = self.block_five(x4_dw)
if self.has_dropout:
x5 = self.dropout(x5)
res = [x1, x2, x3, x4, x5]
return res
class Decoder(nn.Module):
def __init__(self, n_channels=3, n_classes=2, n_filters=16, normalization='none', has_dropout=False, has_residual=False, up_type=0):
super(Decoder, self).__init__()
self.has_dropout = has_dropout
convBlock = ConvBlock if not has_residual else ResidualConvBlock
self.block_five_up = UpSampling(n_filters * 16, n_filters * 8, normalization=normalization, mode_upsampling=up_type)
self.block_six = convBlock(3, n_filters * 8, n_filters * 8, normalization=normalization)
self.block_six_up = UpSampling(n_filters * 8, n_filters * 4, normalization=normalization, mode_upsampling=up_type)
self.block_seven = convBlock(3, n_filters * 4, n_filters * 4, normalization=normalization)
self.block_seven_up = UpSampling(n_filters * 4, n_filters * 2, normalization=normalization, mode_upsampling=up_type)
self.block_eight = convBlock(2, n_filters * 2, n_filters * 2, normalization=normalization)
self.block_eight_up = UpSampling(n_filters * 2, n_filters, normalization=normalization, mode_upsampling=up_type)
self.block_nine_1 = convBlock(1, n_filters, n_filters, normalization=normalization)
self.block_nine_2 = convBlock(1, n_filters, n_filters, normalization=normalization)
self.block_nine_3 = convBlock(1, n_filters, n_filters, normalization=normalization)
self.block_c2f = convBlock(1, n_filters*3, n_filters, normalization=normalization)
self.out_conv_3 = nn.Conv3d(n_filters, n_classes, 1, padding=0)
self.dropout = nn.Dropout3d(p=0.5, inplace=False)
def forward(self, features):
x1 = features[0]
x2 = features[1]
x3 = features[2]
x4 = features[3]
x5 = features[4]
x5_up = self.block_five_up(x5)
x5_up = x5_up + x4
x6 = self.block_six(x5_up)
x6_up = self.block_six_up(x6)
x6_up = x6_up + x3
x7 = self.block_seven(x6_up)
x7_up = self.block_seven_up(x7)
x7_up = x7_up + x2
x8 = self.block_eight(x7_up)
x8_up = self.block_eight_up(x8)
x8_up = x8_up + x1
x91 = self.block_nine_1(x8_up)
if self.has_dropout:
x91 = self.dropout(x91)
x92 = self.block_nine_2(x8_up)
if self.has_dropout:
x92 = self.dropout(x92)
x93 = self.block_nine_3(x8_up)
if self.has_dropout:
x93 = self.dropout(x93)
out_seg_diff = torch.cat(((x92 - x91), x91, x93), dim=1)
out_seg_3 = self.block_c2f(out_seg_diff)
out_seg_3 = self.out_conv_3(out_seg_3)
return out_seg_3
class SSLHead(nn.Module):
def __init__(self, n_fiters) -> None:
super().__init__();
self.first_upsample = nn.Sequential(
UpSampling(n_fiters*16, n_fiters*8, normalization='instancenorm'),
UpSampling(n_fiters*8, n_fiters*4, normalization='instancenorm'),
UpSampling(n_fiters*4, n_fiters*2, normalization='instancenorm'),
UpSampling(n_fiters*2, n_fiters, normalization='instancenorm'),
)
# self.second_upsample = nn.Sequential(
# UpSampling(n_fiters*8, n_fiters*4, normalization='instancenorm'),
# UpSampling(n_fiters*4, n_fiters*2, normalization='instancenorm'),
# UpSampling(n_fiters*2, n_fiters, normalization='instancenorm'),
# )
# self.third_upsample = nn.Sequential(
# UpSampling(n_fiters*4, n_fiters*2, normalization='instancenorm'),
# UpSampling(n_fiters*2, n_fiters, normalization='instancenorm'),
# )
# self.fourth_upsample = nn.Sequential(
# UpSampling(n_fiters*2, n_fiters, normalization='instancenorm'),
# )
self.final_conv = nn.Conv3d(16, 1, 3, 1, 1);
def forward(self, x):
u1 = self.first_upsample(x[-1]);
# u2 = self.second_upsample(x[-2]);
# u3 = self.third_upsample(x[-3]);
# u4 = self.fourth_upsample(x[-4]);
out = self.final_conv(u1);
return out;
class VNet(nn.Module):
def __init__(self, model_type, n_channels=3, n_classes=1, n_filters=16, normalization='none', has_dropout=False, has_residual=False):
super(VNet, self).__init__()
self.encoder = Encoder(n_channels, n_classes, n_filters, normalization, has_dropout, has_residual)
self.modle_type = model_type;
if model_type == 'segmentation':
self.decoder = Decoder(n_channels, n_classes, n_filters, normalization, has_dropout, has_residual, 0)
else:
self.ssl_head = SSLHead(n_filters);
def forward(self, input):
features = self.encoder(input)
if self.modle_type == 'segmentation':
out_seg_3 = self.decoder(features)
return out_seg_3
out = self.ssl_head(features);
return out;
def test():
model = VNet(model_type='pretraining', n_channels=3, n_classes=2, normalization='batchnorm', has_dropout=True);
inp = torch.rand((2, 3, 256, 256, 256));
model(inp);
if __name__ == '__main__':
test();