Note
: This repository is still developing.
Chapter 1: Special Continuous Random Variables
- 1.1. Normal (Gaussian) Distribution
- 1.2. Chi-square Distribution
- 1.3. T-student Distribution
- 1.4. Fisher Distribution
- 1.5. Continuous Uniform Distribution
- 1.6. Exponential Distribution
- 1.7. Gamma Distribution
- 1.8. Beta Distribution
- 1.9. Weibull Distribution
- 1.10. Cauchy Distribution
- 1.11. Laplace Distribution
- 1.12. Logistic Distribution
Chapter 2: Special Discrete Random Variables
- 2.1. Bernoulli Distribution
- 2.2. Binomial Distribution
- 2.3. Negative Binomial (Pascal) Distribution
- 2.4. Geometric Distribution
- 2.5. Poisson Distribution
- 2.6. Discrete Uniform Distribution
- 2.7. Hypergeometric Distribution
Chapter 3: Confidence Intervals
- 3.1. Confidence Interval for the Mean of a Normal Population
- 3.1.1. Known Standard Deviation
- 3.1.2. Unknown Standard Deviation
- 3.2. Confidence Interval for the Variance of a Normal Population
- 3.2.1. Unknown Mean of the Population
- 3.2.2. Known Mean of the Population
- 3.3. Confidence Interval for the Difference in Means of Two Normal Population
- 3.3.1. Known Variances
- 3.3.2. Unknown but Equal Variances
- 3.4. Confidence Interval for the Ratio of Variances of Two Normal Populations
- 3.5. Confidence Interval for the Mean of a Bernoulli Random Variable
Chapter 4: Parametric Hypothesis Testing
- 4.1. Introduction
- 4.2. Test Concerning the Mean of a Normal Population
- 4.2.1. Known Standard Deviation
- 4.2.2. Unknown Standard Deviation
- 4.3. Test Concerning the Equality of Means of Two Normal Populations
- 4.3.1. Known Variances
- 4.3.2. Unknown but Equal Variances
- 4.4. Paired t-test
- 4.5. Test Concerning the Variance of a Normal Population
- 4.6. Test Concerning the Equality of Variances of Two Normal Populations
- 4.7. Test Concerning P in Bernoulli Populations
- 4.8. Test Concerning the Equality of P in Two Bernoulli Populations
Chapter 5: Statistical Hypothesis Testing
- 5.1. Normality Tests
- 5.1.1. Shapiro-Wilk Test
- 5.1.2. D’Agostino’s Test
- 5.1.3. Anderson-Darling Test
- 5.2. Correlation Tests
- 5.2.1. Pearson’s Correlation Coefficient
- 5.2.2. Spearman’s Rank Correlation
- 5.2.3. Kendall’s Rank Correlation
- 5.2.4. Chi-Squared Test
- 5.3. Stationary Tests
- 5.3.1. Augmented Dickey-Fuller Unit Root Test
- 5.3.2. Kwiatkowski-Phillips-Schmidt-Shin Test
- 5.4. Other Tests
- 5.4.1. Mann-Whitney U-Test
- 5.4.2. Wilcoxon Signed-Rank Test
- 5.4.3. Kruskal-Wallis H Test
- 5.4.4. Friedman Test
- 6.1. Introduction
- 6.2. Least Squares Estimators of the Regression Parameters
- 6.3. Statistical Inferences about the Regression Parameters
- 6.3.1. Inferences Concerning B
- 6.3.1.1. Known Variance
- 6.3.1.2. Unknown Variance
- 6.3.2. Inferences Concerning A
- 6.3.2.1. Unknown Variance
- 6.3.3. T-tests for Regression Parameters with statsmodels
- 6.3.4. F-statistic for Overall Significance in Regression
- 6.3.1. Inferences Concerning B
- 6.4. Confidence Intervals Concerning Regression Models
- 6.4.1. Confidence Interval for B
- 6.4.1.1. Known Variance
- 6.4.1.2. Unknown Variance
- 6.4.2. Confidence Interval for A
- 6.4.2.1. Unknown Variance
- 6.4.3. Confidence Interval for A+Bx
- 6.4.3.1. Unknown Variance
- 6.4.4. Prediction Interval of a Future Response
- 6.4.1. Confidence Interval for B
- 6.5. Residuals
- 6.5.1. Regression Diagnostic
- 6.5.2. Multicollinearity
Chapter 7: Analysis of Variance (ANOVA)
- 7.1. One-Way Analysis of Variance
- 7.1.1. Equal Sample Sizes
- 7.1.2. Unequal Sample Sizes
- 7.2. Two-Way Analysis of Variance