-
Notifications
You must be signed in to change notification settings - Fork 56
/
magcal.c
619 lines (515 loc) · 21.1 KB
/
magcal.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
// Copyright (c) 2014, Freescale Semiconductor, Inc.
// All rights reserved.
// vim: set ts=4:
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of Freescale Semiconductor, Inc. nor the
// names of its contributors may be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL FREESCALE SEMICONDUCTOR, INC. BE LIABLE FOR ANY
// DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
// ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// This file contains magnetic calibration functions. It is STRONGLY RECOMMENDED
// that the casual developer NOT TOUCH THIS FILE. The mathematics behind this file
// is extremely complex, and it will be very easy (almost inevitable) that you screw
// it up.
//
// Haha - This file has been edited! Please do not blame or pester NXP (formerly
// Freescale) about the "almost inevitable" issues!
#include "imuread.h"
#define FXOS8700_UTPERCOUNT 0.1f
#define DEFAULTB 50.0F // default geomagnetic field (uT)
#define X 0 // vector components
#define Y 1
#define Z 2
#define ONETHIRD 0.33333333F // one third
#define ONESIXTH 0.166666667F // one sixth
#define MINMEASUREMENTS4CAL 40 // minimum number of measurements for 4 element calibration
#define MINMEASUREMENTS7CAL 100 // minimum number of measurements for 7 element calibration
#define MINMEASUREMENTS10CAL 150 // minimum number of measurements for 10 element calibration
#define MINBFITUT 22.0F // minimum geomagnetic field B (uT) for valid calibration
#define MAXBFITUT 67.0F // maximum geomagnetic field B (uT) for valid calibration
#define FITERRORAGINGSECS 7200.0F // 2 hours: time for fit error to increase (age) by e=2.718
static void fUpdateCalibration4INV(MagCalibration_t *MagCal);
static void fUpdateCalibration7EIG(MagCalibration_t *MagCal);
static void fUpdateCalibration10EIG(MagCalibration_t *MagCal);
// run the magnetic calibration
int MagCal_Run(void)
{
int i, j; // loop counters
int isolver; // magnetic solver used
int count=0;
static int waitcount=0;
// only do the calibration occasionally
if (++waitcount < 20) return 0;
waitcount = 0;
// count number of data points
for (i=0; i < MAGBUFFSIZE; i++) {
if (magcal.valid[i]) count++;
}
if (count < MINMEASUREMENTS4CAL) return 0;
if (magcal.ValidMagCal) {
// age the existing fit error to avoid one good calibration locking out future updates
magcal.FitErrorAge *= 1.02f;
}
// is enough data collected
if (count < MINMEASUREMENTS7CAL) {
isolver = 4;
fUpdateCalibration4INV(&magcal); // 4 element matrix inversion calibration
if (magcal.trFitErrorpc < 12.0f) magcal.trFitErrorpc = 12.0f;
} else if (count < MINMEASUREMENTS10CAL) {
isolver = 7;
fUpdateCalibration7EIG(&magcal); // 7 element eigenpair calibration
if (magcal.trFitErrorpc < 7.5f) magcal.trFitErrorpc = 7.5f;
} else {
isolver = 10;
fUpdateCalibration10EIG(&magcal); // 10 element eigenpair calibration
}
// the trial geomagnetic field must be in range (earth is 22uT to 67uT)
if ((magcal.trB >= MINBFITUT) && (magcal.trB <= MAXBFITUT)) {
// always accept the calibration if
// 1: no previous calibration exists
// 2: the calibration fit is reduced or
// 3: an improved solver was used giving a good trial calibration (4% or under)
if ((magcal.ValidMagCal == 0) ||
(magcal.trFitErrorpc <= magcal.FitErrorAge) ||
((isolver > magcal.ValidMagCal) && (magcal.trFitErrorpc <= 4.0F))) {
// accept the new calibration solution
//printf("new magnetic cal, B=%.2f uT\n", magcal.trB);
magcal.ValidMagCal = isolver;
magcal.FitError = magcal.trFitErrorpc;
if (magcal.trFitErrorpc > 2.0f) {
magcal.FitErrorAge = magcal.trFitErrorpc;
} else {
magcal.FitErrorAge = 2.0f;
}
magcal.B = magcal.trB;
magcal.FourBsq = 4.0F * magcal.trB * magcal.trB;
for (i = X; i <= Z; i++) {
magcal.V[i] = magcal.trV[i];
for (j = X; j <= Z; j++) {
magcal.invW[i][j] = magcal.trinvW[i][j];
}
}
return 1; // indicates new calibration applied
}
}
return 0;
}
// 4 element calibration using 4x4 matrix inverse
static void fUpdateCalibration4INV(MagCalibration_t *MagCal)
{
float fBp2; // fBp[X]^2+fBp[Y]^2+fBp[Z]^2
float fSumBp4; // sum of fBp2
float fscaling; // set to FUTPERCOUNT * FMATRIXSCALING
float fE; // error function = r^T.r
int16_t iOffset[3]; // offset to remove large DC hard iron bias in matrix
int16_t iCount; // number of measurements counted
int i, j, k; // loop counters
// working arrays for 4x4 matrix inversion
float *pfRows[4];
int8_t iColInd[4];
int8_t iRowInd[4];
int8_t iPivot[4];
// compute fscaling to reduce multiplications later
fscaling = FXOS8700_UTPERCOUNT / DEFAULTB;
// the trial inverse soft iron matrix invW always equals
// the identity matrix for 4 element calibration
f3x3matrixAeqI(MagCal->trinvW);
// zero fSumBp4=Y^T.Y, vecB=X^T.Y (4x1) and on and above
// diagonal elements of matA=X^T*X (4x4)
fSumBp4 = 0.0F;
for (i = 0; i < 4; i++) {
MagCal->vecB[i] = 0.0F;
for (j = i; j < 4; j++) {
MagCal->matA[i][j] = 0.0F;
}
}
// the offsets are guaranteed to be set from the first element but to avoid compiler error
iOffset[X] = iOffset[Y] = iOffset[Z] = 0;
// use from MINEQUATIONS up to MAXEQUATIONS entries from magnetic buffer to compute matrices
iCount = 0;
for (j = 0; j < MAGBUFFSIZE; j++) {
if (MagCal->valid[j]) {
// use first valid magnetic buffer entry as estimate (in counts) for offset
if (iCount == 0) {
for (k = X; k <= Z; k++) {
iOffset[k] = MagCal->BpFast[k][j];
}
}
// store scaled and offset fBp[XYZ] in vecA[0-2] and fBp[XYZ]^2 in vecA[3-5]
for (k = X; k <= Z; k++) {
MagCal->vecA[k] = (float)((int32_t)MagCal->BpFast[k][j]
- (int32_t)iOffset[k]) * fscaling;
MagCal->vecA[k + 3] = MagCal->vecA[k] * MagCal->vecA[k];
}
// calculate fBp2 = Bp[X]^2 + Bp[Y]^2 + Bp[Z]^2 (scaled uT^2)
fBp2 = MagCal->vecA[3] + MagCal->vecA[4] + MagCal->vecA[5];
// accumulate fBp^4 over all measurements into fSumBp4=Y^T.Y
fSumBp4 += fBp2 * fBp2;
// now we have fBp2, accumulate vecB[0-2] = X^T.Y =sum(Bp2.Bp[XYZ])
for (k = X; k <= Z; k++) {
MagCal->vecB[k] += MagCal->vecA[k] * fBp2;
}
//accumulate vecB[3] = X^T.Y =sum(fBp2)
MagCal->vecB[3] += fBp2;
// accumulate on and above-diagonal terms of matA = X^T.X ignoring matA[3][3]
MagCal->matA[0][0] += MagCal->vecA[X + 3];
MagCal->matA[0][1] += MagCal->vecA[X] * MagCal->vecA[Y];
MagCal->matA[0][2] += MagCal->vecA[X] * MagCal->vecA[Z];
MagCal->matA[0][3] += MagCal->vecA[X];
MagCal->matA[1][1] += MagCal->vecA[Y + 3];
MagCal->matA[1][2] += MagCal->vecA[Y] * MagCal->vecA[Z];
MagCal->matA[1][3] += MagCal->vecA[Y];
MagCal->matA[2][2] += MagCal->vecA[Z + 3];
MagCal->matA[2][3] += MagCal->vecA[Z];
// increment the counter for next iteration
iCount++;
}
}
// set the last element of the measurement matrix to the number of buffer elements used
MagCal->matA[3][3] = (float) iCount;
// store the number of measurements accumulated
MagCal->MagBufferCount = iCount;
// use above diagonal elements of symmetric matA to set both matB and matA to X^T.X
for (i = 0; i < 4; i++) {
for (j = i; j < 4; j++) {
MagCal->matB[i][j] = MagCal->matB[j][i]
= MagCal->matA[j][i] = MagCal->matA[i][j];
}
}
// calculate in situ inverse of matB = inv(X^T.X) (4x4) while matA still holds X^T.X
for (i = 0; i < 4; i++) {
pfRows[i] = MagCal->matB[i];
}
fmatrixAeqInvA(pfRows, iColInd, iRowInd, iPivot, 4);
// calculate vecA = solution beta (4x1) = inv(X^T.X).X^T.Y = matB * vecB
for (i = 0; i < 4; i++) {
MagCal->vecA[i] = 0.0F;
for (k = 0; k < 4; k++) {
MagCal->vecA[i] += MagCal->matB[i][k] * MagCal->vecB[k];
}
}
// calculate P = r^T.r = Y^T.Y - 2 * beta^T.(X^T.Y) + beta^T.(X^T.X).beta
// = fSumBp4 - 2 * vecA^T.vecB + vecA^T.matA.vecA
// first set P = Y^T.Y - 2 * beta^T.(X^T.Y) = SumBp4 - 2 * vecA^T.vecB
fE = 0.0F;
for (i = 0; i < 4; i++) {
fE += MagCal->vecA[i] * MagCal->vecB[i];
}
fE = fSumBp4 - 2.0F * fE;
// set vecB = (X^T.X).beta = matA.vecA
for (i = 0; i < 4; i++) {
MagCal->vecB[i] = 0.0F;
for (k = 0; k < 4; k++) {
MagCal->vecB[i] += MagCal->matA[i][k] * MagCal->vecA[k];
}
}
// complete calculation of P by adding beta^T.(X^T.X).beta = vecA^T * vecB
for (i = 0; i < 4; i++) {
fE += MagCal->vecB[i] * MagCal->vecA[i];
}
// compute the hard iron vector (in uT but offset and scaled by FMATRIXSCALING)
for (k = X; k <= Z; k++) {
MagCal->trV[k] = 0.5F * MagCal->vecA[k];
}
// compute the scaled geomagnetic field strength B (in uT but scaled by FMATRIXSCALING)
MagCal->trB = sqrtf(MagCal->vecA[3] + MagCal->trV[X] * MagCal->trV[X] +
MagCal->trV[Y] * MagCal->trV[Y] + MagCal->trV[Z] * MagCal->trV[Z]);
// calculate the trial fit error (percent) normalized to number of measurements
// and scaled geomagnetic field strength
MagCal->trFitErrorpc = sqrtf(fE / (float) MagCal->MagBufferCount) * 100.0F /
(2.0F * MagCal->trB * MagCal->trB);
// correct the hard iron estimate for FMATRIXSCALING and the offsets applied (result in uT)
for (k = X; k <= Z; k++) {
MagCal->trV[k] = MagCal->trV[k] * DEFAULTB
+ (float)iOffset[k] * FXOS8700_UTPERCOUNT;
}
// correct the geomagnetic field strength B to correct scaling (result in uT)
MagCal->trB *= DEFAULTB;
}
// 7 element calibration using direct eigen-decomposition
static void fUpdateCalibration7EIG(MagCalibration_t *MagCal)
{
float det; // matrix determinant
float fscaling; // set to FUTPERCOUNT * FMATRIXSCALING
float ftmp; // scratch variable
int16_t iOffset[3]; // offset to remove large DC hard iron bias
int16_t iCount; // number of measurements counted
int i, j, k, m, n; // loop counters
// compute fscaling to reduce multiplications later
fscaling = FXOS8700_UTPERCOUNT / DEFAULTB;
// the offsets are guaranteed to be set from the first element but to avoid compiler error
iOffset[X] = iOffset[Y] = iOffset[Z] = 0;
// zero the on and above diagonal elements of the 7x7 symmetric measurement matrix matA
for (m = 0; m < 7; m++) {
for (n = m; n < 7; n++) {
MagCal->matA[m][n] = 0.0F;
}
}
// place from MINEQUATIONS to MAXEQUATIONS entries into product matrix matA
iCount = 0;
for (j = 0; j < MAGBUFFSIZE; j++) {
if (MagCal->valid[j]) {
// use first valid magnetic buffer entry as offset estimate (bit counts)
if (iCount == 0) {
for (k = X; k <= Z; k++) {
iOffset[k] = MagCal->BpFast[k][j];
}
}
// apply the offset and scaling and store in vecA
for (k = X; k <= Z; k++) {
MagCal->vecA[k + 3] = (float)((int32_t)MagCal->BpFast[k][j]
- (int32_t)iOffset[k]) * fscaling;
MagCal->vecA[k] = MagCal->vecA[k + 3] * MagCal->vecA[k + 3];
}
// accumulate the on-and above-diagonal terms of
// MagCal->matA=Sigma{vecA^T * vecA}
// with the exception of matA[6][6] which will sum to the number
// of measurements and remembering that vecA[6] equals 1.0F
// update the right hand column [6] of matA except for matA[6][6]
for (m = 0; m < 6; m++) {
MagCal->matA[m][6] += MagCal->vecA[m];
}
// update the on and above diagonal terms except for right hand column 6
for (m = 0; m < 6; m++) {
for (n = m; n < 6; n++) {
MagCal->matA[m][n] += MagCal->vecA[m] * MagCal->vecA[n];
}
}
// increment the measurement counter for the next iteration
iCount++;
}
}
// finally set the last element matA[6][6] to the number of measurements
MagCal->matA[6][6] = (float) iCount;
// store the number of measurements accumulated
MagCal->MagBufferCount = iCount;
// copy the above diagonal elements of matA to below the diagonal
for (m = 1; m < 7; m++) {
for (n = 0; n < m; n++) {
MagCal->matA[m][n] = MagCal->matA[n][m];
}
}
// set tmpA7x1 to the unsorted eigenvalues and matB to the unsorted eigenvectors of matA
eigencompute(MagCal->matA, MagCal->vecA, MagCal->matB, 7);
// find the smallest eigenvalue
j = 0;
for (i = 1; i < 7; i++) {
if (MagCal->vecA[i] < MagCal->vecA[j]) {
j = i;
}
}
// set ellipsoid matrix A to the solution vector with smallest eigenvalue,
// compute its determinant and the hard iron offset (scaled and offset)
f3x3matrixAeqScalar(MagCal->A, 0.0F);
det = 1.0F;
for (k = X; k <= Z; k++) {
MagCal->A[k][k] = MagCal->matB[k][j];
det *= MagCal->A[k][k];
MagCal->trV[k] = -0.5F * MagCal->matB[k + 3][j] / MagCal->A[k][k];
}
// negate A if it has negative determinant
if (det < 0.0F) {
f3x3matrixAeqMinusA(MagCal->A);
MagCal->matB[6][j] = -MagCal->matB[6][j];
det = -det;
}
// set ftmp to the square of the trial geomagnetic field strength B
// (counts times FMATRIXSCALING)
ftmp = -MagCal->matB[6][j];
for (k = X; k <= Z; k++) {
ftmp += MagCal->A[k][k] * MagCal->trV[k] * MagCal->trV[k];
}
// calculate the trial normalized fit error as a percentage
MagCal->trFitErrorpc = 50.0F *
sqrtf(fabs(MagCal->vecA[j]) / (float) MagCal->MagBufferCount) / fabs(ftmp);
// normalize the ellipsoid matrix A to unit determinant
f3x3matrixAeqAxScalar(MagCal->A, powf(det, -(ONETHIRD)));
// convert the geomagnetic field strength B into uT for normalized
// soft iron matrix A and normalize
MagCal->trB = sqrtf(fabs(ftmp)) * DEFAULTB * powf(det, -(ONESIXTH));
// compute trial invW from the square root of A also with normalized
// determinant and hard iron offset in uT
f3x3matrixAeqI(MagCal->trinvW);
for (k = X; k <= Z; k++) {
MagCal->trinvW[k][k] = sqrtf(fabs(MagCal->A[k][k]));
MagCal->trV[k] = MagCal->trV[k] * DEFAULTB + (float)iOffset[k] * FXOS8700_UTPERCOUNT;
}
}
// 10 element calibration using direct eigen-decomposition
static void fUpdateCalibration10EIG(MagCalibration_t *MagCal)
{
float det; // matrix determinant
float fscaling; // set to FUTPERCOUNT * FMATRIXSCALING
float ftmp; // scratch variable
int16_t iOffset[3]; // offset to remove large DC hard iron bias in matrix
int16_t iCount; // number of measurements counted
int i, j, k, m, n; // loop counters
// compute fscaling to reduce multiplications later
fscaling = FXOS8700_UTPERCOUNT / DEFAULTB;
// the offsets are guaranteed to be set from the first element but to avoid compiler error
iOffset[X] = iOffset[Y] = iOffset[Z] = 0;
// zero the on and above diagonal elements of the 10x10 symmetric measurement matrix matA
for (m = 0; m < 10; m++) {
for (n = m; n < 10; n++) {
MagCal->matA[m][n] = 0.0F;
}
}
// sum between MINEQUATIONS to MAXEQUATIONS entries into the 10x10 product matrix matA
iCount = 0;
for (j = 0; j < MAGBUFFSIZE; j++) {
if (MagCal->valid[j]) {
// use first valid magnetic buffer entry as estimate for offset
// to help solution (bit counts)
if (iCount == 0) {
for (k = X; k <= Z; k++) {
iOffset[k] = MagCal->BpFast[k][j];
}
}
// apply the fixed offset and scaling and enter into vecA[6-8]
for (k = X; k <= Z; k++) {
MagCal->vecA[k + 6] = (float)((int32_t)MagCal->BpFast[k][j]
- (int32_t)iOffset[k]) * fscaling;
}
// compute measurement vector elements vecA[0-5] from vecA[6-8]
MagCal->vecA[0] = MagCal->vecA[6] * MagCal->vecA[6];
MagCal->vecA[1] = 2.0F * MagCal->vecA[6] * MagCal->vecA[7];
MagCal->vecA[2] = 2.0F * MagCal->vecA[6] * MagCal->vecA[8];
MagCal->vecA[3] = MagCal->vecA[7] * MagCal->vecA[7];
MagCal->vecA[4] = 2.0F * MagCal->vecA[7] * MagCal->vecA[8];
MagCal->vecA[5] = MagCal->vecA[8] * MagCal->vecA[8];
// accumulate the on-and above-diagonal terms of matA=Sigma{vecA^T * vecA}
// with the exception of matA[9][9] which equals the number of measurements
// update the right hand column [9] of matA[0-8][9] ignoring matA[9][9]
for (m = 0; m < 9; m++) {
MagCal->matA[m][9] += MagCal->vecA[m];
}
// update the on and above diagonal terms of matA ignoring right hand column 9
for (m = 0; m < 9; m++) {
for (n = m; n < 9; n++) {
MagCal->matA[m][n] += MagCal->vecA[m] * MagCal->vecA[n];
}
}
// increment the measurement counter for the next iteration
iCount++;
}
}
// set the last element matA[9][9] to the number of measurements
MagCal->matA[9][9] = (float) iCount;
// store the number of measurements accumulated
MagCal->MagBufferCount = iCount;
// copy the above diagonal elements of symmetric product matrix matA to below the diagonal
for (m = 1; m < 10; m++) {
for (n = 0; n < m; n++) {
MagCal->matA[m][n] = MagCal->matA[n][m];
}
}
// set MagCal->vecA to the unsorted eigenvalues and matB to the unsorted
// normalized eigenvectors of matA
eigencompute(MagCal->matA, MagCal->vecA, MagCal->matB, 10);
// set ellipsoid matrix A from elements of the solution vector column j with
// smallest eigenvalue
j = 0;
for (i = 1; i < 10; i++) {
if (MagCal->vecA[i] < MagCal->vecA[j]) {
j = i;
}
}
MagCal->A[0][0] = MagCal->matB[0][j];
MagCal->A[0][1] = MagCal->A[1][0] = MagCal->matB[1][j];
MagCal->A[0][2] = MagCal->A[2][0] = MagCal->matB[2][j];
MagCal->A[1][1] = MagCal->matB[3][j];
MagCal->A[1][2] = MagCal->A[2][1] = MagCal->matB[4][j];
MagCal->A[2][2] = MagCal->matB[5][j];
// negate entire solution if A has negative determinant
det = f3x3matrixDetA(MagCal->A);
if (det < 0.0F) {
f3x3matrixAeqMinusA(MagCal->A);
MagCal->matB[6][j] = -MagCal->matB[6][j];
MagCal->matB[7][j] = -MagCal->matB[7][j];
MagCal->matB[8][j] = -MagCal->matB[8][j];
MagCal->matB[9][j] = -MagCal->matB[9][j];
det = -det;
}
// compute the inverse of the ellipsoid matrix
f3x3matrixAeqInvSymB(MagCal->invA, MagCal->A);
// compute the trial hard iron vector in offset bit counts times FMATRIXSCALING
for (k = X; k <= Z; k++) {
MagCal->trV[k] = 0.0F;
for (m = X; m <= Z; m++) {
MagCal->trV[k] += MagCal->invA[k][m] * MagCal->matB[m + 6][j];
}
MagCal->trV[k] *= -0.5F;
}
// compute the trial geomagnetic field strength B in bit counts times FMATRIXSCALING
MagCal->trB = sqrtf(fabs(MagCal->A[0][0] * MagCal->trV[X] * MagCal->trV[X] +
2.0F * MagCal->A[0][1] * MagCal->trV[X] * MagCal->trV[Y] +
2.0F * MagCal->A[0][2] * MagCal->trV[X] * MagCal->trV[Z] +
MagCal->A[1][1] * MagCal->trV[Y] * MagCal->trV[Y] +
2.0F * MagCal->A[1][2] * MagCal->trV[Y] * MagCal->trV[Z] +
MagCal->A[2][2] * MagCal->trV[Z] * MagCal->trV[Z] - MagCal->matB[9][j]));
// calculate the trial normalized fit error as a percentage
MagCal->trFitErrorpc = 50.0F * sqrtf(
fabs(MagCal->vecA[j]) / (float) MagCal->MagBufferCount) /
(MagCal->trB * MagCal->trB);
// correct for the measurement matrix offset and scaling and
// get the computed hard iron offset in uT
for (k = X; k <= Z; k++) {
MagCal->trV[k] = MagCal->trV[k] * DEFAULTB + (float)iOffset[k] * FXOS8700_UTPERCOUNT;
}
// convert the trial geomagnetic field strength B into uT for
// un-normalized soft iron matrix A
MagCal->trB *= DEFAULTB;
// normalize the ellipsoid matrix A to unit determinant and
// correct B by root of this multiplicative factor
f3x3matrixAeqAxScalar(MagCal->A, powf(det, -(ONETHIRD)));
MagCal->trB *= powf(det, -(ONESIXTH));
// compute trial invW from the square root of fA (both with normalized determinant)
// set vecA to the unsorted eigenvalues and matB to the unsorted eigenvectors of matA
// where matA holds the 3x3 matrix fA in its top left elements
for (i = 0; i < 3; i++) {
for (j = 0; j < 3; j++) {
MagCal->matA[i][j] = MagCal->A[i][j];
}
}
eigencompute(MagCal->matA, MagCal->vecA, MagCal->matB, 3);
// set MagCal->matB to be eigenvectors . diag(sqrt(sqrt(eigenvalues))) =
// matB . diag(sqrt(sqrt(vecA))
for (j = 0; j < 3; j++) { // loop over columns j
ftmp = sqrtf(sqrtf(fabs(MagCal->vecA[j])));
for (i = 0; i < 3; i++) { // loop over rows i
MagCal->matB[i][j] *= ftmp;
}
}
// set trinvW to eigenvectors * diag(sqrt(eigenvalues)) * eigenvectors^T =
// matB * matB^T = sqrt(fA) (guaranteed symmetric)
// loop over rows
for (i = 0; i < 3; i++) {
// loop over on and above diagonal columns
for (j = i; j < 3; j++) {
MagCal->trinvW[i][j] = 0.0F;
// accumulate the matrix product
for (k = 0; k < 3; k++) {
MagCal->trinvW[i][j] += MagCal->matB[i][k] * MagCal->matB[j][k];
}
// copy to below diagonal element
MagCal->trinvW[j][i] = MagCal->trinvW[i][j];
}
}
}