Skip to content
This repository was archived by the owner on Mar 11, 2019. It is now read-only.

Commit 39dc7c2

Browse files
Luis Francisco Hernández SánchezLuis Francisco Hernández Sánchez
Luis Francisco Hernández Sánchez
authored and
Luis Francisco Hernández Sánchez
committed
Updated network files to v65 and split p-p m-m and p-m
1 parent fd964c4 commit 39dc7c2

23 files changed

+30492
-13856
lines changed

docs/Architecture.pptx

2.27 KB
Binary file not shown.
-60 KB
Loading

docs/plots/plotHits_v2.R

Lines changed: 66 additions & 64 deletions
Original file line numberDiff line numberDiff line change
@@ -1,64 +1,66 @@
1-
# This script plots the number of hit reactions and pathways for proteins and proteoforms
2-
3-
###############################
4-
# Load libraries
5-
6-
library(ggplot2)
7-
require(cowplot)
8-
library(stats)
9-
source("loadHits.R")
10-
11-
###############################
12-
# First, load data
13-
14-
hitsReactions <- load.hits(fileProteins = "ReactionsPerProtein.csv", fileProteoforms = "ReactionsPerProteoform.csv")
15-
hitsPathways <- load.hits(fileProteins = "PathwaysPerProtein.csv", fileProteoforms = "PathwaysPerProteoform.csv")
16-
17-
hits <- load.hits.Merged(fileProteins = "HitsPerProtein.csv", fileProteoforms = "HitsPerProteoform.csv")
18-
19-
###############################
20-
# Second, create plots
21-
22-
cdat <- ddply(hitsPathways, "Type", summarise, Count.mean=mean(Count))
23-
cdat
24-
25-
plot.density.ByAccession <- ggplot(hits[which(hits$Type == "Protein" & hits$Hit == "Pathway"),], aes(x=Count)) +
26-
scale_fill_manual(values=c("#999999", "#E69F00", "#56B4E9")) +
27-
scale_color_manual(values=c("#999999", "#E69F00", "#56B4E9")) +
28-
geom_density(size=1, alpha = 0.4, show.legend = F) +
29-
scale_x_log10(name = "# mapped pathways") +
30-
theme_bw() +
31-
geom_vline(xintercept=mean(hits$Count[which(hits$Type == "Protein" & hits$Hit == "Pathway")]), linetype="dashed", color = "black")
32-
plot.density.ByAccession
33-
34-
plot.density.ByProteoform <- ggplot(hits[which(hits$Type == "Proteoform" & hits$Hit == "Pathway"),], aes(x=Count)) +
35-
scale_fill_manual(values=c("#999999", "#E69F00", "#56B4E9")) +
36-
scale_color_manual(values=c("#999999", "#E69F00", "#56B4E9")) +
37-
geom_density(size=1, alpha = 0.4, show.legend = F) +
38-
scale_x_log10(name = "# mapped pathways") +
39-
theme_bw() +
40-
geom_vline(xintercept=mean(hits$Count[which(hits$Type == "Proteoform" & hits$Hit == "Pathway")]), linetype="dashed", color = "black")
41-
plot.density.ByProteoform
42-
43-
###############################
44-
# Third, put the plots together in a grid
45-
46-
plot_grid(
47-
plot.density.ByAccession,
48-
plot.density.ByProteoform,
49-
plot.scatter,
50-
labels = c("A", "B","C"))
51-
52-
###############################
53-
# Fourth, create facets with densities
54-
55-
plot.density <- ggplot(hits, aes(x=Count, colour = Type, fill = Type)) +
56-
facet_grid(. ~ Hit) +
57-
scale_fill_manual(values=c("#999999", "#E69F00", "#56B4E9")) +
58-
scale_color_manual(values=c("#999999", "#E69F00", "#56B4E9")) +
59-
geom_density(size=1, alpha = 0.4, show.legend = T) +
60-
scale_x_continuous(limits = c(xMin, xMax)) +
61-
theme_bw() + ggtitle(name = "# mapped pathways") +
62-
geom_vline(data=cdat, aes(xintercept=Count.mean, color=Type),linetype="dashed", show.legend = T)
63-
64-
plot.density
1+
# This script plots the number of hit reactions and pathways for proteins and proteoforms
2+
3+
###############################
4+
# Load libraries
5+
6+
library(ggplot2)
7+
require(cowplot)
8+
library(stats)
9+
library(plyr)
10+
source("loadHits.R")
11+
12+
###############################
13+
# First, load data
14+
15+
hitsReactions <- load.hits(fileProteins = "ReactionsPerProtein.csv", fileProteoforms = "ReactionsPerProteoform.csv")
16+
hitsPathways <- load.hits(fileProteins = "PathwaysPerProtein.csv", fileProteoforms = "PathwaysPerProteoform.csv")
17+
18+
hits <- load.hits.Merged(fileProteins = "HitsPerProtein.csv", fileProteoforms = "HitsPerProteoform.csv")
19+
20+
###############################
21+
# Second, create plots
22+
23+
24+
cdat <- ddply(hitsPathways, "Type", summarise, Count.mean=mean(Count))
25+
cdat
26+
27+
plot.density.ByAccession <- ggplot(hits[which(hits$Type == "Protein" & hits$Hit == "Pathway"),], aes(x=Count)) +
28+
scale_fill_manual(values=c("#999999", "#E69F00", "#56B4E9")) +
29+
scale_color_manual(values=c("#999999", "#E69F00", "#56B4E9")) +
30+
geom_density(size=1, alpha = 0.4, show.legend = F) +
31+
scale_x_log10(name = "# mapped pathways") +
32+
theme_bw() +
33+
geom_vline(xintercept=mean(hits$Count[which(hits$Type == "Protein" & hits$Hit == "Pathway")]), linetype="dashed", color = "black")
34+
plot.density.ByAccession
35+
36+
plot.density.ByProteoform <- ggplot(hits[which(hits$Type == "Proteoform" & hits$Hit == "Pathway"),], aes(x=Count)) +
37+
scale_fill_manual(values=c("#999999", "#E69F00", "#56B4E9")) +
38+
scale_color_manual(values=c("#999999", "#E69F00", "#56B4E9")) +
39+
geom_density(size=1, alpha = 0.4, show.legend = F) +
40+
scale_x_log10(name = "# mapped pathways") +
41+
theme_bw() +
42+
geom_vline(xintercept=mean(hits$Count[which(hits$Type == "Proteoform" & hits$Hit == "Pathway")]), linetype="dashed", color = "black")
43+
plot.density.ByProteoform
44+
45+
###############################
46+
# Third, put the plots together in a grid
47+
48+
plot_grid(
49+
plot.density.ByAccession,
50+
plot.density.ByProteoform,
51+
plot.scatter,
52+
labels = c("A", "B","C"))
53+
54+
###############################
55+
# Fourth, create facets with densities
56+
57+
plot.density <- ggplot(hits, aes(x=Count, colour = Type, fill = Type)) +
58+
facet_grid(. ~ Hit) +
59+
scale_fill_manual(values=c("#999999", "#E69F00", "#56B4E9")) +
60+
scale_color_manual(values=c("#999999", "#E69F00", "#56B4E9")) +
61+
geom_density(size=1, alpha = 0.4, show.legend = T) +
62+
scale_x_log10() +
63+
theme_bw() +
64+
geom_vline(data=cdat, aes(xintercept=Count.mean, color=Type),linetype="dashed", show.legend = T)
65+
66+
plot.density

0 commit comments

Comments
 (0)