diff --git a/chapter_introduction/deep-learning-intro.md b/chapter_introduction/deep-learning-intro.md index 4b1577ae9..0831b96bd 100644 --- a/chapter_introduction/deep-learning-intro.md +++ b/chapter_introduction/deep-learning-intro.md @@ -87,7 +87,7 @@ * 游戏曾被认为是人类智能最后的堡垒。自使用时间差分强化学习玩双陆棋的TD-Gammon开始,算法和算力的发展催生了一系列在游戏上使用的新算法。与双陆棋不同,国际象棋有更复杂的状态空间和更多的可选动作。“深蓝”用大量的并行、专用硬件和游戏树的高效搜索打败了加里·卡斯帕罗夫 [17]。围棋因其庞大的状态空间被认为是更难的游戏,AlphaGo在2016年用结合深度学习与蒙特卡洛树采样的方法达到了人类水准 [18]。对德州扑克游戏而言,除了巨大的状态空间之外,更大的挑战是游戏的信息并不完全可见,例如看不到对手的牌。而“冷扑大师”用高效的策略体系超越了人类玩家的表现 [19]。以上的例子都体现出了先进的算法是人工智能在游戏上的表现提升的重要原因。 -* 机器学习进步的另一个标志是自动驾驶汽车的发展。尽管距离完全的自主驾驶还有很长的路要走,但诸如[Momenta](http://www.momenta.ai)、[Tesla](http://www.tesla.com)、[NVIDIA](http://www.nvidia.com)、 [MobilEye](http://www.mobileye.com)和[Waymo](http://www.waymo.com)这样的公司发布的具有部分自主驾驶功能的产品展示出了这个领域巨大的进步。完全自主驾驶的难点在于它需要将感知、思考和规则整合在同一个系统中。目前,深度学习主要被应用在计算机视觉的部分,剩余的部分还是需要工程师们的大量调试。 +* 机器学习进步的另一个标志是自动驾驶汽车的发展。尽管距离完全的自主驾驶还有很长的路要走,但诸如[Tesla](http://www.tesla.com)、[NVIDIA](http://www.nvidia.com)、 [MobilEye](http://www.mobileye.com)和[Waymo](http://www.waymo.com)这样的公司发布的具有部分自主驾驶功能的产品展示出了这个领域巨大的进步。完全自主驾驶的难点在于它需要将感知、思考和规则整合在同一个系统中。目前,深度学习主要被应用在计算机视觉的部分,剩余的部分还是需要工程师们的大量调试。 以上列出的仅仅是近年来深度学习所取得的成果的冰山一角。机器人学、物流管理、计算生物学、粒子物理学和天文学近年来的发展也有一部分要归功于深度学习。可以看到,深度学习已经逐渐演变成一个工程师和科学家皆可使用的普适工具。