diff --git a/chapter_introduction/deep-learning-intro.md b/chapter_introduction/deep-learning-intro.md index 99bf68b73..8335ac631 100644 --- a/chapter_introduction/deep-learning-intro.md +++ b/chapter_introduction/deep-learning-intro.md @@ -85,7 +85,7 @@ * 物体识别也经历了漫长的发展过程。在2010年从图像中识别出物体的类别仍是一个相当有挑战性的任务。当年日本电气、伊利诺伊大学香槟分校和罗格斯大学团队在ImageNet基准测试上取得了28%的前五错误率 [15]。到2017年,这个数字降低到了2.25% [16]。研究人员在鸟类识别和皮肤癌诊断上,也取得了同样惊世骇俗的成绩。 -* 游戏曾被认为是人类智能最后的堡垒。自使用时间差分强化学习玩双陆棋的TD-Gammon开始,算法和算力的发展催生了一系列在游戏上使用的新算法。与双陆棋不同,国际象棋有更复杂的状态空间和更多的可选动作。“深蓝”用大量的并行、专用硬件和游戏树的高效搜索打败了加里·卡斯帕罗夫 [17]。围棋因其庞大的状态空间被认为是更难的游戏,AlphaGo在2016年用结合深度学习与蒙特卡洛树采样的方法达到了人类水准 [18]。对德州扑克游戏而言,除了巨大的状态空间之外,更大的挑战是游戏的信息并不完全可见,例如看不到对手的牌。而“冷扑大师”用高效的策略体系超越了人类玩家的表现 [19]。以上的例子都体现出了先进的算法是人工智能在游戏上的表现提升的重要原因。 +* 游戏曾被认为是人类智能最后的堡垒。自使用时间差分强化学习玩双陆棋的TD-Gammon开始,算法和算力的发展催生了一系列在游戏上使用的新算法。与双陆棋不同,国际象棋有更复杂的状态空间和更多的可选动作。“深蓝”用大量的并行、专用硬件和游戏树的高效搜索打败了加里·卡斯帕罗夫 [17]。围棋因其庞大的状态空间被认为是更难的游戏,AlphaGo在2016年用结合深度学习与蒙特卡罗树采样的方法达到了人类水准 [18]。对德州扑克游戏而言,除了巨大的状态空间之外,更大的挑战是游戏的信息并不完全可见,例如看不到对手的牌。而“冷扑大师”用高效的策略体系超越了人类玩家的表现 [19]。以上的例子都体现出了先进的算法是人工智能在游戏上的表现提升的重要原因。 * 机器学习进步的另一个标志是自动驾驶汽车的发展。尽管距离完全的自主驾驶还有很长的路要走,但诸如[Tesla](http://www.tesla.com)、[NVIDIA](http://www.nvidia.com)、 [MobilEye](http://www.mobileye.com)和[Waymo](http://www.waymo.com)这样的公司发布的具有部分自主驾驶功能的产品展示出了这个领域巨大的进步。完全自主驾驶的难点在于它需要将感知、思考和规则整合在同一个系统中。目前,深度学习主要被应用在计算机视觉的部分,剩余的部分还是需要工程师们的大量调试。