🏷️sec_mlp_scratch
我们已经在 :numref:sec_mlp
中描述了多层感知机(MLP),
现在让我们尝试自己实现一个多层感知机。
为了与之前softmax回归( :numref:sec_softmax_scratch
)
获得的结果进行比较,
我们将继续使用Fashion-MNIST图像分类数据集
( :numref:sec_fashion_mnist
)。
from d2l import mxnet as d2l
from mxnet import gluon, np, npx
npx.set_np()
#@tab pytorch
from d2l import torch as d2l
import torch
from torch import nn
#@tab tensorflow
from d2l import tensorflow as d2l
import tensorflow as tf
#@tab paddle
from d2l import paddle as d2l
import warnings
warnings.filterwarnings("ignore")
import paddle
from paddle import nn
#@tab all
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
回想一下,Fashion-MNIST中的每个图像由
我们用几个张量来表示我们的参数。 注意,对于每一层我们都要记录一个权重矩阵和一个偏置向量。 跟以前一样,我们要为损失关于这些参数的梯度分配内存。
num_inputs, num_outputs, num_hiddens = 784, 10, 256
W1 = np.random.normal(scale=0.01, size=(num_inputs, num_hiddens))
b1 = np.zeros(num_hiddens)
W2 = np.random.normal(scale=0.01, size=(num_hiddens, num_outputs))
b2 = np.zeros(num_outputs)
params = [W1, b1, W2, b2]
for param in params:
param.attach_grad()
#@tab pytorch
num_inputs, num_outputs, num_hiddens = 784, 10, 256
W1 = nn.Parameter(torch.randn(
num_inputs, num_hiddens, requires_grad=True) * 0.01)
b1 = nn.Parameter(torch.zeros(num_hiddens, requires_grad=True))
W2 = nn.Parameter(torch.randn(
num_hiddens, num_outputs, requires_grad=True) * 0.01)
b2 = nn.Parameter(torch.zeros(num_outputs, requires_grad=True))
params = [W1, b1, W2, b2]
#@tab tensorflow
num_inputs, num_outputs, num_hiddens = 784, 10, 256
W1 = tf.Variable(tf.random.normal(
shape=(num_inputs, num_hiddens), mean=0, stddev=0.01))
b1 = tf.Variable(tf.zeros(num_hiddens))
W2 = tf.Variable(tf.random.normal(
shape=(num_hiddens, num_outputs), mean=0, stddev=0.01))
b2 = tf.Variable(tf.zeros(num_outputs))
params = [W1, b1, W2, b2]
#@tab paddle
num_inputs, num_outputs, num_hiddens = 784, 10, 256
W1 = paddle.randn([num_inputs, num_hiddens]) * 0.01
W1.stop_gradient = False
b1 = paddle.zeros([num_hiddens])
b1.stop_gradient = False
W2 = paddle.randn([num_hiddens, num_outputs]) * 0.01
W2.stop_gradient = False
b2 = paddle.zeros([num_outputs])
b2.stop_gradient = False
params = [W1, b1, W2, b2]
为了确保我们对模型的细节了如指掌,
我们将[实现ReLU激活函数],
而不是直接调用内置的relu
函数。
def relu(X):
return np.maximum(X, 0)
#@tab pytorch
def relu(X):
a = torch.zeros_like(X)
return torch.max(X, a)
#@tab tensorflow
def relu(X):
return tf.math.maximum(X, 0)
#@tab paddle
def relu(X):
a = paddle.zeros_like(X)
return paddle.maximum(X, a)
因为我们忽略了空间结构,
所以我们使用reshape
将每个二维图像转换为一个长度为num_inputs
的向量。
只需几行代码就可以(实现我们的模型)。
def net(X):
X = d2l.reshape(X, (-1, num_inputs))
H = relu(np.dot(X, W1) + b1)
return np.dot(H, W2) + b2
#@tab pytorch
def net(X):
X = d2l.reshape(X, (-1, num_inputs))
H = relu(X@W1 + b1) # 这里“@”代表矩阵乘法
return (H@W2 + b2)
#@tab tensorflow
def net(X):
X = d2l.reshape(X, (-1, num_inputs))
H = relu(tf.matmul(X, W1) + b1)
return tf.matmul(H, W2) + b2
#@tab paddle
def net(X):
X = X.reshape((-1, num_inputs))
H = relu(X@W1 + b1) # 这里“@”代表矩阵乘法
return (H@W2 + b2)
由于我们已经从零实现过softmax函数( :numref:sec_softmax_scratch
),
因此在这里我们直接使用高级API中的内置函数来计算softmax和交叉熵损失。
回想一下我们之前在 :numref:subsec_softmax-implementation-revisited
中
对这些复杂问题的讨论。
我们鼓励感兴趣的读者查看损失函数的源代码,以加深对实现细节的了解。
loss = gluon.loss.SoftmaxCrossEntropyLoss()
#@tab pytorch, paddle
loss = nn.CrossEntropyLoss(reduction='none')
#@tab tensorflow
def loss(y_hat, y):
return tf.losses.sparse_categorical_crossentropy(
y, y_hat, from_logits=True)
幸运的是,[多层感知机的训练过程与softmax回归的训练过程完全相同]。
可以直接调用d2l
包的train_ch3
函数(参见 :numref:sec_softmax_scratch
),
将迭代周期数设置为10,并将学习率设置为0.1.
num_epochs, lr = 10, 0.1
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs,
lambda batch_size: d2l.sgd(params, lr, batch_size))
#@tab pytorch
num_epochs, lr = 10, 0.1
updater = torch.optim.SGD(params, lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, updater)
#@tab tensorflow
num_epochs, lr = 10, 0.1
updater = d2l.Updater([W1, W2, b1, b2], lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, updater)
#@tab paddle
num_epochs, lr = 10, 0.1
updater = paddle.optimizer.SGD(learning_rate=lr, parameters=params)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, updater)
为了对学习到的模型进行评估,我们将[在一些测试数据上应用这个模型]。
#@tab all
d2l.predict_ch3(net, test_iter)
- 手动实现一个简单的多层感知机是很容易的。然而如果有大量的层,从零开始实现多层感知机会变得很麻烦(例如,要命名和记录模型的参数)。
- 在所有其他参数保持不变的情况下,更改超参数
num_hiddens
的值,并查看此超参数的变化对结果有何影响。确定此超参数的最佳值。 - 尝试添加更多的隐藏层,并查看它对结果有何影响。
- 改变学习速率会如何影响结果?保持模型架构和其他超参数(包括轮数)不变,学习率设置为多少会带来最好的结果?
- 通过对所有超参数(学习率、轮数、隐藏层数、每层的隐藏单元数)进行联合优化,可以得到的最佳结果是什么?
- 描述为什么涉及多个超参数更具挑战性。
- 如果想要构建多个超参数的搜索方法,请想出一个聪明的策略。
:begin_tab:mxnet
Discussions
:end_tab:
:begin_tab:pytorch
Discussions
:end_tab:
:begin_tab:tensorflow
Discussions
:end_tab: