Solve boundary value problem of the form
- Collocation method
subroutine collocation_method(x_min, x_max, n, solution, solution_ext, f, a, p, q, basic, &
x_points, is_print, is_draw, info)
- Integral Least Squares method
subroutine int_least_squares_method(x_min, x_max, n, solution, solution_ext, f, a, p, q, basic, &
x_points, is_print, is_draw, info)
- Discrete Least Squares method
subroutine disc_least_squares_method(x_min, x_max, n, solution, solution_ext, f, a, p, q, basic, &
x_points, is_print, is_draw, info)
- Galerkin method
subroutine galerkin_method(x_min, x_max, n, solution, solution_ext, f, a, p, q, basic, &
x_points, is_print, is_draw, info)
- Finite Difference method
subroutine finite_difference_method(AA, BB, x_min, x_max, n, f, a, p, q, alpha1, beta1, &
alpha2, beta2, y_coef, y_coef_0, y_coef_n, x_grid, sol, is_print, is_draw, info)
Estimate the solution of the time-dependent (time-independent) heat equation over a one dimensional region.
Time-independent form:
Time-dependent form:
- Finite Difference methods (1D Steady State Heat Equation)
subroutine fd_centered_heat_transfer_steady(n, a, b, Ua, Ub, k, f, x_grid, sol, &
is_print, is_draw, info)
subroutine fd_balance_heat_transfer_steady(n, a, b, Ua, Ub, k, f, x_points, sol, &
is_print, is_draw, info, psources_)
- Finite Difference method (Time Dependent 1D Heat Equation using Explicit Time Stepping)
subroutine fd_heat_transfer_explicit(n, m, a, b, t, g1, g2, phi, k, f, x_list, t_list, &
matrix, is_check_cfl, bc, is_print, is_draw, info)
- Finite Difference method (Time Dependent 1D Heat Equation using Implicit Time Stepping)
subroutine fd_heat_transfer_implicit(n, m, a, b, t, g1, g2, phi, k, f, x_list, t_list, &
matrix, bc, is_print, is_draw, info)
- Modeling of steady-state thermal conductivity processes.
- Modeling of unsteady-state thermal conductivity processes.