|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 2, |
| 6 | + "id": "e537072d", |
| 7 | + "metadata": {}, |
| 8 | + "outputs": [], |
| 9 | + "source": [ |
| 10 | + "import pandas as pd\n", |
| 11 | + "import numpy as np" |
| 12 | + ] |
| 13 | + }, |
| 14 | + { |
| 15 | + "cell_type": "code", |
| 16 | + "execution_count": 5, |
| 17 | + "id": "31af5d6d", |
| 18 | + "metadata": {}, |
| 19 | + "outputs": [], |
| 20 | + "source": [ |
| 21 | + "# step no 1 create a sales data\n", |
| 22 | + "data = {\n", |
| 23 | + " \"order_id\":[1,2,3,4,5,6,7,8],\n", |
| 24 | + " \"customer\":['john','joy','rahul','rohan','riya','tiya','heena','nishant'],\n", |
| 25 | + " \"product\":['laptop','phone','mouse','tablet','phone','tablet','laptop','laptop'],\n", |
| 26 | + " \"quantity\":[4,5,2,1,2,1,1,3],\n", |
| 27 | + " \"price\": [1000,300,4500,500,760,980,780,7000],\n", |
| 28 | + " \"date\":['2023-01-03','2023-01-04','2023-01-01','2023-01-04','2023-01-05','2023-01-8','2023-01-23','2023-01-12'] \n", |
| 29 | + "}" |
| 30 | + ] |
| 31 | + }, |
| 32 | + { |
| 33 | + "cell_type": "code", |
| 34 | + "execution_count": 8, |
| 35 | + "id": "03332933", |
| 36 | + "metadata": {}, |
| 37 | + "outputs": [], |
| 38 | + "source": [ |
| 39 | + "# step no 2 create a dataframe\n", |
| 40 | + "df = pd.DataFrame(data)" |
| 41 | + ] |
| 42 | + }, |
| 43 | + { |
| 44 | + "cell_type": "code", |
| 45 | + "execution_count": 9, |
| 46 | + "id": "8f1ce269", |
| 47 | + "metadata": {}, |
| 48 | + "outputs": [ |
| 49 | + { |
| 50 | + "name": "stdout", |
| 51 | + "output_type": "stream", |
| 52 | + "text": [ |
| 53 | + " order_id customer product quantity price date\n", |
| 54 | + "0 1 john laptop 4 1000 2023-01-03\n", |
| 55 | + "1 2 joy phone 5 300 2023-01-04\n", |
| 56 | + "2 3 rahul mouse 2 4500 2023-01-01\n", |
| 57 | + "3 4 rohan tablet 1 500 2023-01-04\n", |
| 58 | + "4 5 riya phone 2 760 2023-01-05\n" |
| 59 | + ] |
| 60 | + } |
| 61 | + ], |
| 62 | + "source": [ |
| 63 | + "# step no 3 print first 5 row\n", |
| 64 | + "print(df.head())" |
| 65 | + ] |
| 66 | + }, |
| 67 | + { |
| 68 | + "cell_type": "code", |
| 69 | + "execution_count": 11, |
| 70 | + "id": "a3c4e939", |
| 71 | + "metadata": {}, |
| 72 | + "outputs": [ |
| 73 | + { |
| 74 | + "name": "stdout", |
| 75 | + "output_type": "stream", |
| 76 | + "text": [ |
| 77 | + " order_id quantity price\n", |
| 78 | + "count 8.00000 8.000000 8.000000\n", |
| 79 | + "mean 4.50000 2.375000 1977.500000\n", |
| 80 | + "std 2.44949 1.505941 2433.467544\n", |
| 81 | + "min 1.00000 1.000000 300.000000\n", |
| 82 | + "25% 2.75000 1.000000 695.000000\n", |
| 83 | + "50% 4.50000 2.000000 880.000000\n", |
| 84 | + "75% 6.25000 3.250000 1875.000000\n", |
| 85 | + "max 8.00000 5.000000 7000.000000\n" |
| 86 | + ] |
| 87 | + } |
| 88 | + ], |
| 89 | + "source": [ |
| 90 | + "# step no 4 data cleaning\n", |
| 91 | + "print(df.describe())" |
| 92 | + ] |
| 93 | + }, |
| 94 | + { |
| 95 | + "cell_type": "code", |
| 96 | + "execution_count": 13, |
| 97 | + "id": "c55d74ee", |
| 98 | + "metadata": {}, |
| 99 | + "outputs": [ |
| 100 | + { |
| 101 | + "name": "stdout", |
| 102 | + "output_type": "stream", |
| 103 | + "text": [ |
| 104 | + "order_id int64\n", |
| 105 | + "customer object\n", |
| 106 | + "product object\n", |
| 107 | + "quantity int64\n", |
| 108 | + "price int64\n", |
| 109 | + "date object\n", |
| 110 | + "dtype: object\n" |
| 111 | + ] |
| 112 | + } |
| 113 | + ], |
| 114 | + "source": [ |
| 115 | + "print(df.dtypes)" |
| 116 | + ] |
| 117 | + }, |
| 118 | + { |
| 119 | + "cell_type": "code", |
| 120 | + "execution_count": 16, |
| 121 | + "id": "8fb82fa7", |
| 122 | + "metadata": {}, |
| 123 | + "outputs": [ |
| 124 | + { |
| 125 | + "name": "stdout", |
| 126 | + "output_type": "stream", |
| 127 | + "text": [ |
| 128 | + "order_id int64\n", |
| 129 | + "customer object\n", |
| 130 | + "product object\n", |
| 131 | + "quantity int64\n", |
| 132 | + "price int64\n", |
| 133 | + "date datetime64[ns]\n", |
| 134 | + "dtype: object\n" |
| 135 | + ] |
| 136 | + } |
| 137 | + ], |
| 138 | + "source": [ |
| 139 | + "# convert date column to datetime\n", |
| 140 | + "# print(df['date'])\n", |
| 141 | + "\n", |
| 142 | + "df['date'] = pd.to_datetime(df['date'])\n", |
| 143 | + "print(df.dtypes)" |
| 144 | + ] |
| 145 | + }, |
| 146 | + { |
| 147 | + "cell_type": "code", |
| 148 | + "execution_count": 18, |
| 149 | + "id": "d7cef0c7", |
| 150 | + "metadata": {}, |
| 151 | + "outputs": [ |
| 152 | + { |
| 153 | + "name": "stdout", |
| 154 | + "output_type": "stream", |
| 155 | + "text": [ |
| 156 | + "order_id 0\n", |
| 157 | + "customer 0\n", |
| 158 | + "product 0\n", |
| 159 | + "quantity 0\n", |
| 160 | + "price 0\n", |
| 161 | + "date 0\n", |
| 162 | + "dtype: int64\n" |
| 163 | + ] |
| 164 | + } |
| 165 | + ], |
| 166 | + "source": [ |
| 167 | + "# check for missing values\n", |
| 168 | + "print(df.isnull().sum())" |
| 169 | + ] |
| 170 | + }, |
| 171 | + { |
| 172 | + "cell_type": "code", |
| 173 | + "execution_count": 22, |
| 174 | + "id": "663ad189", |
| 175 | + "metadata": {}, |
| 176 | + "outputs": [ |
| 177 | + { |
| 178 | + "name": "stdout", |
| 179 | + "output_type": "stream", |
| 180 | + "text": [ |
| 181 | + " order_id customer product quantity price date total_revenue\n", |
| 182 | + "0 1 john laptop 4 1000 2023-01-03 4000\n", |
| 183 | + "1 2 joy phone 5 300 2023-01-04 1500\n", |
| 184 | + "2 3 rahul mouse 2 4500 2023-01-01 9000\n", |
| 185 | + "3 4 rohan tablet 1 500 2023-01-04 500\n", |
| 186 | + "4 5 riya phone 2 760 2023-01-05 1520\n" |
| 187 | + ] |
| 188 | + } |
| 189 | + ], |
| 190 | + "source": [ |
| 191 | + "# step no. 5 Basic data analysis\n", |
| 192 | + "# calculate total revenue per order\n", |
| 193 | + "\n", |
| 194 | + "df['total_revenue'] = df['quantity'] * df['price']\n", |
| 195 | + "print(df.head())\n", |
| 196 | + "\n" |
| 197 | + ] |
| 198 | + }, |
| 199 | + { |
| 200 | + "cell_type": "code", |
| 201 | + "execution_count": 27, |
| 202 | + "id": "5a897f16", |
| 203 | + "metadata": {}, |
| 204 | + "outputs": [ |
| 205 | + { |
| 206 | + "name": "stdout", |
| 207 | + "output_type": "stream", |
| 208 | + "text": [ |
| 209 | + " customer total_revenue\n", |
| 210 | + "0 heena 780\n", |
| 211 | + "1 john 4000\n", |
| 212 | + "2 joy 1500\n", |
| 213 | + "3 nishant 21000\n", |
| 214 | + "4 rahul 9000\n", |
| 215 | + "5 riya 1520\n", |
| 216 | + "6 rohan 500\n", |
| 217 | + "7 tiya 980\n" |
| 218 | + ] |
| 219 | + } |
| 220 | + ], |
| 221 | + "source": [ |
| 222 | + "#step no. 6 total revenue by customer (grouping and aggregation)\n", |
| 223 | + "customer_revenue = df.groupby('customer')['total_revenue'].sum().reset_index()\n", |
| 224 | + "print(customer_revenue)" |
| 225 | + ] |
| 226 | + }, |
| 227 | + { |
| 228 | + "cell_type": "code", |
| 229 | + "execution_count": 28, |
| 230 | + "id": "1d97a64d", |
| 231 | + "metadata": {}, |
| 232 | + "outputs": [ |
| 233 | + { |
| 234 | + "name": "stdout", |
| 235 | + "output_type": "stream", |
| 236 | + "text": [ |
| 237 | + "\n", |
| 238 | + " product sales = \n", |
| 239 | + " product quantity\n", |
| 240 | + "0 laptop 8\n", |
| 241 | + "1 mouse 2\n", |
| 242 | + "2 phone 7\n", |
| 243 | + "3 tablet 2\n" |
| 244 | + ] |
| 245 | + } |
| 246 | + ], |
| 247 | + "source": [ |
| 248 | + "# step no. 7 Product analysis\n", |
| 249 | + "# most popular product by quantity sold \n", |
| 250 | + "product_sales = df.groupby('product')['quantity'].sum().reset_index()\n", |
| 251 | + "print('\\n product sales = \\n ',product_sales)" |
| 252 | + ] |
| 253 | + } |
| 254 | + ], |
| 255 | + "metadata": { |
| 256 | + "kernelspec": { |
| 257 | + "display_name": "Python 3", |
| 258 | + "language": "python", |
| 259 | + "name": "python3" |
| 260 | + }, |
| 261 | + "language_info": { |
| 262 | + "codemirror_mode": { |
| 263 | + "name": "ipython", |
| 264 | + "version": 3 |
| 265 | + }, |
| 266 | + "file_extension": ".py", |
| 267 | + "mimetype": "text/x-python", |
| 268 | + "name": "python", |
| 269 | + "nbconvert_exporter": "python", |
| 270 | + "pygments_lexer": "ipython3", |
| 271 | + "version": "3.11.4" |
| 272 | + } |
| 273 | + }, |
| 274 | + "nbformat": 4, |
| 275 | + "nbformat_minor": 5 |
| 276 | +} |
0 commit comments