forked from hkchengrex/XMem
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodules.py
250 lines (186 loc) · 8.61 KB
/
modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
"""
modules.py - This file stores the rather boring network blocks.
x - usually means features that only depends on the image
g - usually means features that also depends on the mask.
They might have an extra "group" or "num_objects" dimension, hence
batch_size * num_objects * num_channels * H * W
The trailing number of a variable usually denote the stride
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from model.group_modules import *
from model import resnet
from model.cbam import CBAM
class FeatureFusionBlock(nn.Module):
def __init__(self, x_in_dim, g_in_dim, g_mid_dim, g_out_dim):
super().__init__()
self.distributor = MainToGroupDistributor()
self.block1 = GroupResBlock(x_in_dim+g_in_dim, g_mid_dim)
self.attention = CBAM(g_mid_dim)
self.block2 = GroupResBlock(g_mid_dim, g_out_dim)
def forward(self, x, g):
batch_size, num_objects = g.shape[:2]
g = self.distributor(x, g)
g = self.block1(g)
r = self.attention(g.flatten(start_dim=0, end_dim=1))
r = r.view(batch_size, num_objects, *r.shape[1:])
g = self.block2(g+r)
return g
class HiddenUpdater(nn.Module):
# Used in the decoder, multi-scale feature + GRU
def __init__(self, g_dims, mid_dim, hidden_dim):
super().__init__()
self.hidden_dim = hidden_dim
self.g16_conv = GConv2D(g_dims[0], mid_dim, kernel_size=1)
self.g8_conv = GConv2D(g_dims[1], mid_dim, kernel_size=1)
self.g4_conv = GConv2D(g_dims[2], mid_dim, kernel_size=1)
self.transform = GConv2D(mid_dim+hidden_dim, hidden_dim*3, kernel_size=3, padding=1)
nn.init.xavier_normal_(self.transform.weight)
def forward(self, g, h):
g = self.g16_conv(g[0]) + self.g8_conv(downsample_groups(g[1], ratio=1/2)) + \
self.g4_conv(downsample_groups(g[2], ratio=1/4))
g = torch.cat([g, h], 2)
# defined slightly differently than standard GRU,
# namely the new value is generated before the forget gate.
# might provide better gradient but frankly it was initially just an
# implementation error that I never bothered fixing
values = self.transform(g)
forget_gate = torch.sigmoid(values[:,:,:self.hidden_dim])
update_gate = torch.sigmoid(values[:,:,self.hidden_dim:self.hidden_dim*2])
new_value = torch.tanh(values[:,:,self.hidden_dim*2:])
new_h = forget_gate*h*(1-update_gate) + update_gate*new_value
return new_h
class HiddenReinforcer(nn.Module):
# Used in the value encoder, a single GRU
def __init__(self, g_dim, hidden_dim):
super().__init__()
self.hidden_dim = hidden_dim
self.transform = GConv2D(g_dim+hidden_dim, hidden_dim*3, kernel_size=3, padding=1)
nn.init.xavier_normal_(self.transform.weight)
def forward(self, g, h):
g = torch.cat([g, h], 2)
# defined slightly differently than standard GRU,
# namely the new value is generated before the forget gate.
# might provide better gradient but frankly it was initially just an
# implementation error that I never bothered fixing
values = self.transform(g)
forget_gate = torch.sigmoid(values[:,:,:self.hidden_dim])
update_gate = torch.sigmoid(values[:,:,self.hidden_dim:self.hidden_dim*2])
new_value = torch.tanh(values[:,:,self.hidden_dim*2:])
new_h = forget_gate*h*(1-update_gate) + update_gate*new_value
return new_h
class ValueEncoder(nn.Module):
def __init__(self, value_dim, hidden_dim, single_object=False):
super().__init__()
self.single_object = single_object
network = resnet.resnet18(pretrained=True, extra_dim=1 if single_object else 2)
self.conv1 = network.conv1
self.bn1 = network.bn1
self.relu = network.relu # 1/2, 64
self.maxpool = network.maxpool
self.layer1 = network.layer1 # 1/4, 64
self.layer2 = network.layer2 # 1/8, 128
self.layer3 = network.layer3 # 1/16, 256
self.distributor = MainToGroupDistributor()
self.fuser = FeatureFusionBlock(1024, 256, value_dim, value_dim)
if hidden_dim > 0:
self.hidden_reinforce = HiddenReinforcer(value_dim, hidden_dim)
else:
self.hidden_reinforce = None
def forward(self, image, image_feat_f16, h, masks, others, is_deep_update=True):
# image_feat_f16 is the feature from the key encoder
if not self.single_object:
g = torch.stack([masks, others], 2)
else:
g = masks.unsqueeze(2)
g = self.distributor(image, g)
batch_size, num_objects = g.shape[:2]
g = g.flatten(start_dim=0, end_dim=1)
g = self.conv1(g)
g = self.bn1(g) # 1/2, 64
g = self.maxpool(g) # 1/4, 64
g = self.relu(g)
g = self.layer1(g) # 1/4
g = self.layer2(g) # 1/8
g = self.layer3(g) # 1/16
g = g.view(batch_size, num_objects, *g.shape[1:])
g = self.fuser(image_feat_f16, g)
if is_deep_update and self.hidden_reinforce is not None:
h = self.hidden_reinforce(g, h)
return g, h
class KeyEncoder(nn.Module):
def __init__(self):
super().__init__()
network = resnet.resnet50(pretrained=True)
self.conv1 = network.conv1
self.bn1 = network.bn1
self.relu = network.relu # 1/2, 64
self.maxpool = network.maxpool
self.res2 = network.layer1 # 1/4, 256
self.layer2 = network.layer2 # 1/8, 512
self.layer3 = network.layer3 # 1/16, 1024
def forward(self, f):
x = self.conv1(f)
x = self.bn1(x)
x = self.relu(x) # 1/2, 64
x = self.maxpool(x) # 1/4, 64
f4 = self.res2(x) # 1/4, 256
f8 = self.layer2(f4) # 1/8, 512
f16 = self.layer3(f8) # 1/16, 1024
return f16, f8, f4
class UpsampleBlock(nn.Module):
def __init__(self, skip_dim, g_up_dim, g_out_dim, scale_factor=2):
super().__init__()
self.skip_conv = nn.Conv2d(skip_dim, g_up_dim, kernel_size=3, padding=1)
self.distributor = MainToGroupDistributor(method='add')
self.out_conv = GroupResBlock(g_up_dim, g_out_dim)
self.scale_factor = scale_factor
def forward(self, skip_f, up_g):
skip_f = self.skip_conv(skip_f)
g = upsample_groups(up_g, ratio=self.scale_factor)
g = self.distributor(skip_f, g)
g = self.out_conv(g)
return g
class KeyProjection(nn.Module):
def __init__(self, in_dim, keydim):
super().__init__()
self.key_proj = nn.Conv2d(in_dim, keydim, kernel_size=3, padding=1)
# shrinkage
self.d_proj = nn.Conv2d(in_dim, 1, kernel_size=3, padding=1)
# selection
self.e_proj = nn.Conv2d(in_dim, keydim, kernel_size=3, padding=1)
nn.init.orthogonal_(self.key_proj.weight.data)
nn.init.zeros_(self.key_proj.bias.data)
def forward(self, x, need_s, need_e):
shrinkage = self.d_proj(x)**2 + 1 if (need_s) else None
selection = torch.sigmoid(self.e_proj(x)) if (need_e) else None
return self.key_proj(x), shrinkage, selection
class Decoder(nn.Module):
def __init__(self, val_dim, hidden_dim):
super().__init__()
self.fuser = FeatureFusionBlock(1024, val_dim+hidden_dim, 512, 512)
if hidden_dim > 0:
self.hidden_update = HiddenUpdater([512, 256, 256+1], 256, hidden_dim)
else:
self.hidden_update = None
self.up_16_8 = UpsampleBlock(512, 512, 256) # 1/16 -> 1/8
self.up_8_4 = UpsampleBlock(256, 256, 256) # 1/8 -> 1/4
self.pred = nn.Conv2d(256, 1, kernel_size=3, padding=1, stride=1)
def forward(self, f16, f8, f4, hidden_state, memory_readout, h_out=True):
batch_size, num_objects = memory_readout.shape[:2]
if self.hidden_update is not None:
g16 = self.fuser(f16, torch.cat([memory_readout, hidden_state], 2))
else:
g16 = self.fuser(f16, memory_readout)
g8 = self.up_16_8(f8, g16)
g4 = self.up_8_4(f4, g8)
logits = self.pred(F.relu(g4.flatten(start_dim=0, end_dim=1)))
if h_out and self.hidden_update is not None:
g4 = torch.cat([g4, logits.view(batch_size, num_objects, 1, *logits.shape[-2:])], 2)
hidden_state = self.hidden_update([g16, g8, g4], hidden_state)
else:
hidden_state = None
logits = F.interpolate(logits, scale_factor=4, mode='bilinear', align_corners=False)
logits = logits.view(batch_size, num_objects, *logits.shape[-2:])
return hidden_state, logits