forked from turboderp/exllama
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtokenizer.py
63 lines (43 loc) · 1.7 KB
/
tokenizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
from sentencepiece import SentencePieceProcessor
import os
import torch
class ExLlamaTokenizer:
def __init__(self, tokenizer_model_path):
self.path = tokenizer_model_path
self.tokenizer = SentencePieceProcessor(model_file = self.path)
self.eos_token_id = self.tokenizer.eos_id()
self.bos_token_id = self.tokenizer.bos_id()
self.pad_token_id = 0
self.newline_token_id = 13
# Encode string
def encode(self, text):
if isinstance(text, list):
# text is a list of strings
list_ids = self.tokenizer.Encode(text)
max_length = max([len(ids) for ids in list_ids])
padded_ids = []
for ids in list_ids:
padding = torch.full((max_length - len(ids),), self.pad_token_id)
sequence = torch.tensor(ids)
padded_ids.append(torch.cat((padding, sequence), dim = 0))
return torch.stack(padded_ids, dim = 0)
else:
# text is a single string
ids = self.tokenizer.Encode(text)
return torch.tensor(ids).unsqueeze(0)
def decode(self, ids):
if ids.dim() > 1:
texts = []
for i in range(ids.shape[0]):
seq = ids[i].tolist()
seq = [t for t in seq if t != self.pad_token_id]
if self.eos_token_id in seq: seq = seq[:seq.index(self.eos_token_id)]
texts.append(self.tokenizer.Decode(seq))
return texts
else:
ids = ids.tolist()
text = self.tokenizer.Decode(ids)
return text
def num_tokens(self, text):
ids = self.tokenizer.Encode(text)
return len(ids)