|
| 1 | +import os |
| 2 | +import paddle.v2 as paddle |
| 3 | +import paddle.v2.fluid as fluid |
| 4 | +import reader |
| 5 | + |
| 6 | + |
| 7 | +def conv_bn_layer(input, num_filters, filter_size, stride=1, groups=1, |
| 8 | + act=None): |
| 9 | + conv = fluid.layers.conv2d( |
| 10 | + input=input, |
| 11 | + num_filters=num_filters, |
| 12 | + filter_size=filter_size, |
| 13 | + stride=stride, |
| 14 | + padding=(filter_size - 1) / 2, |
| 15 | + groups=groups, |
| 16 | + act=None, |
| 17 | + bias_attr=False) |
| 18 | + return fluid.layers.batch_norm(input=conv, act=act) |
| 19 | + |
| 20 | + |
| 21 | +def squeeze_excitation(input, num_channels, reduction_ratio): |
| 22 | + pool = fluid.layers.pool2d( |
| 23 | + input=input, pool_size=0, pool_type='avg', global_pooling=True) |
| 24 | + squeeze = fluid.layers.fc( |
| 25 | + input=pool, size=num_channels / reduction_ratio, act='relu') |
| 26 | + excitation = fluid.layers.fc( |
| 27 | + input=squeeze, size=num_channels, act='sigmoid') |
| 28 | + scale = fluid.layers.elementwise_mul(x=input, y=excitation, axis=0) |
| 29 | + return scale |
| 30 | + |
| 31 | + |
| 32 | +def shortcut(input, ch_out, stride): |
| 33 | + ch_in = input.shape[1] |
| 34 | + if ch_in != ch_out: |
| 35 | + return conv_bn_layer(input, ch_out, 3, stride) |
| 36 | + else: |
| 37 | + return input |
| 38 | + |
| 39 | + |
| 40 | +def bottleneck_block(input, num_filters, stride, cardinality, reduction_ratio): |
| 41 | + conv0 = conv_bn_layer( |
| 42 | + input=input, num_filters=num_filters, filter_size=1, act='relu') |
| 43 | + conv1 = conv_bn_layer( |
| 44 | + input=conv0, |
| 45 | + num_filters=num_filters, |
| 46 | + filter_size=3, |
| 47 | + stride=stride, |
| 48 | + groups=cardinality, |
| 49 | + act='relu') |
| 50 | + conv2 = conv_bn_layer( |
| 51 | + input=conv1, num_filters=num_filters * 2, filter_size=1, act=None) |
| 52 | + scale = squeeze_excitation( |
| 53 | + input=conv2, |
| 54 | + num_channels=num_filters * 2, |
| 55 | + reduction_ratio=reduction_ratio) |
| 56 | + |
| 57 | + short = shortcut(input, num_filters * 2, stride) |
| 58 | + |
| 59 | + return fluid.layers.elementwise_add(x=short, y=scale, act='relu') |
| 60 | + |
| 61 | + |
| 62 | +def SE_ResNeXt(input, class_dim, infer=False): |
| 63 | + cardinality = 64 |
| 64 | + reduction_ratio = 16 |
| 65 | + depth = [3, 8, 36, 3] |
| 66 | + num_filters = [128, 256, 512, 1024] |
| 67 | + |
| 68 | + conv = conv_bn_layer( |
| 69 | + input=input, num_filters=64, filter_size=3, stride=2, act='relu') |
| 70 | + conv = conv_bn_layer( |
| 71 | + input=conv, num_filters=64, filter_size=3, stride=1, act='relu') |
| 72 | + conv = conv_bn_layer( |
| 73 | + input=conv, num_filters=128, filter_size=3, stride=1, act='relu') |
| 74 | + conv = fluid.layers.pool2d( |
| 75 | + input=conv, pool_size=3, pool_stride=2, pool_type='max') |
| 76 | + |
| 77 | + for block in range(len(depth)): |
| 78 | + for i in range(depth[block]): |
| 79 | + conv = bottleneck_block( |
| 80 | + input=conv, |
| 81 | + num_filters=num_filters[block], |
| 82 | + stride=2 if i == 0 and block != 0 else 1, |
| 83 | + cardinality=cardinality, |
| 84 | + reduction_ratio=reduction_ratio) |
| 85 | + |
| 86 | + pool = fluid.layers.pool2d( |
| 87 | + input=conv, pool_size=0, pool_type='avg', global_pooling=True) |
| 88 | + if not infer: |
| 89 | + drop = fluid.layers.dropout(x=pool, dropout_prob=0.2) |
| 90 | + else: |
| 91 | + drop = pool |
| 92 | + out = fluid.layers.fc(input=drop, size=class_dim, act='softmax') |
| 93 | + return out |
| 94 | + |
| 95 | + |
| 96 | +def train(learning_rate, batch_size, num_passes, model_save_dir='model'): |
| 97 | + class_dim = 1000 |
| 98 | + image_shape = [3, 224, 224] |
| 99 | + |
| 100 | + image = fluid.layers.data(name='image', shape=image_shape, dtype='float32') |
| 101 | + label = fluid.layers.data(name='label', shape=[1], dtype='int64') |
| 102 | + |
| 103 | + out = SE_ResNeXt(input=image, class_dim=class_dim) |
| 104 | + |
| 105 | + cost = fluid.layers.cross_entropy(input=out, label=label) |
| 106 | + avg_cost = fluid.layers.mean(x=cost) |
| 107 | + |
| 108 | + optimizer = fluid.optimizer.Momentum( |
| 109 | + learning_rate=learning_rate / batch_size, |
| 110 | + momentum=0.9, |
| 111 | + regularization=fluid.regularizer.L2Decay(1e-4 * batch_size)) |
| 112 | + opts = optimizer.minimize(avg_cost) |
| 113 | + accuracy = fluid.evaluator.Accuracy(input=out, label=label) |
| 114 | + |
| 115 | + inference_program = fluid.default_main_program().clone() |
| 116 | + with fluid.program_guard(inference_program): |
| 117 | + test_accuracy = fluid.evaluator.Accuracy(input=out, label=label) |
| 118 | + test_target = [avg_cost] + test_accuracy.metrics + test_accuracy.states |
| 119 | + inference_program = fluid.io.get_inference_program(test_target) |
| 120 | + |
| 121 | + place = fluid.CUDAPlace(0) |
| 122 | + exe = fluid.Executor(place) |
| 123 | + exe.run(fluid.default_startup_program()) |
| 124 | + |
| 125 | + train_reader = paddle.batch(datareader.train(), batch_size=batch_size) |
| 126 | + test_reader = paddle.batch(datareader.test(), batch_size=batch_size) |
| 127 | + feeder = fluid.DataFeeder(place=place, feed_list=[image, label]) |
| 128 | + |
| 129 | + for pass_id in range(num_passes): |
| 130 | + accuracy.reset(exe) |
| 131 | + for batch_id, data in enumerate(train_reader()): |
| 132 | + loss, acc = exe.run( |
| 133 | + fluid.default_main_program(), |
| 134 | + feed=feeder.feed(data), |
| 135 | + fetch_list=[avg_cost] + accuracy.metrics) |
| 136 | + print("Pass {0}, batch {1}, loss {2}, acc {3}".format( |
| 137 | + pass_id, batch_id, loss[0], acc[0])) |
| 138 | + pass_acc = accuracy.eval(exe) |
| 139 | + |
| 140 | + test_accuracy.reset(exe) |
| 141 | + for data in test_reader(): |
| 142 | + out, acc = exe.run( |
| 143 | + inference_program, |
| 144 | + feed=feeder.feed(data), |
| 145 | + fetch_list=[avg_cost] + test_accuracy.metrics) |
| 146 | + test_pass_acc = test_accuracy.eval(exe) |
| 147 | + print("End pass {0}, train_acc {1}, test_acc {2}".format( |
| 148 | + pass_id, pass_acc, test_pass_acc)) |
| 149 | + |
| 150 | + model_path = os.path.join(model_save_dir, str(pass_id)) |
| 151 | + fluid.io.save_inference_model(model_path, ['image'], [out], exe) |
| 152 | + |
| 153 | + |
| 154 | +if __name__ == '__main__': |
| 155 | + train(learning_rate=0.1, batch_size=7, num_passes=100) |
0 commit comments