-
Notifications
You must be signed in to change notification settings - Fork 251
/
Copy pathlocal_train.py
74 lines (64 loc) · 2.51 KB
/
local_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
import os
import sys
import paddle
import logging
import paddle.fluid as fluid
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger("fluid")
logger.setLevel(logging.INFO)
paddle.enable_static()
def load_vocab(filename):
vocab = {}
with open(filename) as f:
wid = 0
for line in f:
vocab[line.strip()] = wid
wid += 1
vocab["<unk>"] = len(vocab)
return vocab
if __name__ == "__main__":
from nets import lstm_net
model_name = "imdb_lstm"
vocab = load_vocab('imdb.vocab')
dict_dim = len(vocab)
data = fluid.layers.data(
name="words", shape=[1], dtype="int64", lod_level=1)
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
dataset = fluid.DatasetFactory().create_dataset()
filelist = ["train_data/%s" % x for x in os.listdir("train_data")]
dataset.set_use_var([data, label])
pipe_command = "python imdb_reader.py"
dataset.set_pipe_command(pipe_command)
dataset.set_batch_size(128)
dataset.set_filelist(filelist)
dataset.set_thread(10)
avg_cost, acc, prediction = lstm_net(data, label, dict_dim)
optimizer = fluid.optimizer.SGD(learning_rate=0.01)
optimizer.minimize(avg_cost)
exe = fluid.Executor(fluid.CPUPlace())
exe.run(fluid.default_startup_program())
epochs = 6
import paddle_serving_client.io as serving_io
for i in range(epochs):
exe.train_from_dataset(
program=fluid.default_main_program(), dataset=dataset, debug=False)
logger.info("TRAIN --> pass: {}".format(i))
if i == 5:
serving_io.save_model("{}_model".format(model_name),
"{}_client_conf".format(model_name),
{"words": data}, {"prediction": prediction},
fluid.default_main_program())