-
Notifications
You must be signed in to change notification settings - Fork 387
/
ava_predict.py
509 lines (403 loc) · 16.5 KB
/
ava_predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import paddle
import os, sys
import copy as cp
import cv2
import math
try:
import ppdet
except ImportError as e:
print(
f"Warning! {e}, [paddledet] package and it's dependencies is required for AVA."
)
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.abspath(os.path.join(__dir__, '../')))
from paddlevideo.modeling.builder import build_model
from paddlevideo.utils import get_config
from paddlevideo.loader.builder import build_dataloader, build_dataset, build_pipeline
from paddlevideo.metrics.ava_utils import read_labelmap
import time
from os import path as osp
import numpy as np
from paddlevideo.utils import get_config
import pickle
from paddlevideo.utils import (get_logger, load, mkdir, save)
import shutil
FONTFACE = cv2.FONT_HERSHEY_DUPLEX
FONTSCALE = 0.5
FONTCOLOR = (255, 255, 255) # BGR, white
MSGCOLOR = (128, 128, 128) # BGR, gray
THICKNESS = 1
LINETYPE = 1
def hex2color(h):
"""Convert the 6-digit hex string to tuple of 3 int value (RGB)"""
return (int(h[:2], 16), int(h[2:4], 16), int(h[4:], 16))
plate_blue = '03045e-023e8a-0077b6-0096c7-00b4d8-48cae4'
plate_blue = plate_blue.split('-')
plate_blue = [hex2color(h) for h in plate_blue]
plate_green = '004b23-006400-007200-008000-38b000-70e000'
plate_green = plate_green.split('-')
plate_green = [hex2color(h) for h in plate_green]
def abbrev(name):
"""Get the abbreviation of label name:
'take (an object) from (a person)' -> 'take ... from ...'
"""
while name.find('(') != -1:
st, ed = name.find('('), name.find(')')
name = name[:st] + '...' + name[ed + 1:]
return name
# annotations is pred results
def visualize(frames, annotations, plate=plate_blue, max_num=5):
"""Visualize frames with predicted annotations.
Args:
frames (list[np.ndarray]): Frames for visualization, note that
len(frames) % len(annotations) should be 0.
annotations (list[list[tuple]]): The predicted results.
plate (str): The plate used for visualization. Default: plate_blue.
max_num (int): Max number of labels to visualize for a person box.
Default: 5,目前不能大于5.
Returns:
list[np.ndarray]: Visualized frames.
"""
assert max_num + 1 <= len(plate)
plate = [x[::-1] for x in plate]
frames_ = cp.deepcopy(frames)
nf, na = len(frames), len(annotations)
assert nf % na == 0
nfpa = len(frames) // len(annotations)
anno = None
h, w, _ = frames[0].shape
# proposals被归一化需要还原真实坐标值
scale_ratio = np.array([w, h, w, h])
for i in range(na):
anno = annotations[i]
if anno is None:
continue
for j in range(nfpa):
ind = i * nfpa + j
frame = frames_[ind]
for ann in anno:
box = ann[0]
label = ann[1]
if not len(label):
continue
score = ann[2]
box = (box * scale_ratio).astype(np.int64)
st, ed = tuple(box[:2]), tuple(box[2:])
cv2.rectangle(frame, st, ed, plate[0], 2)
for k, lb in enumerate(label):
if k >= max_num:
break
text = abbrev(lb)
text = ': '.join([text, str(score[k])])
location = (0 + st[0], 18 + k * 18 + st[1])
textsize = cv2.getTextSize(text, FONTFACE, FONTSCALE,
THICKNESS)[0]
textwidth = textsize[0]
diag0 = (location[0] + textwidth, location[1] - 14)
diag1 = (location[0], location[1] + 2)
cv2.rectangle(frame, diag0, diag1, plate[k + 1], -1)
cv2.putText(frame, text, location, FONTFACE, FONTSCALE,
FONTCOLOR, THICKNESS, LINETYPE)
return frames_
def frame_extraction(video_path, target_dir):
"""Extract frames given video_path.
Args:
video_path (str): The video_path.
"""
if not os.path.exists(target_dir):
os.makedirs(target_dir, exist_ok=True)
# Should be able to handle videos up to several hours
frame_tmpl = osp.join(target_dir, '{:05d}.jpg')
vid = cv2.VideoCapture(video_path)
FPS = int(vid.get(5))
frames = []
frame_paths = []
flag, frame = vid.read()
index = 1
while flag:
frames.append(frame)
frame_path = frame_tmpl.format(index)
frame_paths.append(frame_path)
cv2.imwrite(frame_path, frame)
index += 1
flag, frame = vid.read()
return frame_paths, frames, FPS
def parse_args():
def str2bool(v):
return v.lower() in ("true", "t", "1")
# general params
parser = argparse.ArgumentParser("PaddleVideo Inference model script")
parser.add_argument('-c',
'--config',
type=str,
default='configs/example.yaml',
help='config file path')
parser.add_argument('--video_path', help='video file/url')
parser.add_argument('-o',
'--override',
action='append',
default=[],
help='config options to be overridden')
parser.add_argument('-w',
'--weights',
type=str,
help='weights for finetuning or testing')
#detection_model_name
parser.add_argument('--detection_model_name',
help='the name of detection model ')
# detection_model_weights
parser.add_argument('--detection_model_weights',
help='the weights path of detection model ')
# params for predict
parser.add_argument('--out-filename',
default='ava_det_demo.mp4',
help='output filename')
parser.add_argument('--predict-stepsize',
default=8,
type=int,
help='give out a prediction per n frames')
parser.add_argument(
'--output-stepsize',
default=4,
type=int,
help=('show one frame per n frames in the demo, we should have: '
'predict_stepsize % output_stepsize == 0'))
parser.add_argument('--output-fps',
default=6,
type=int,
help='the fps of demo video output')
return parser.parse_args()
# 一帧的结果。根据概率大小进行排序
def pack_result(human_detection, result):
"""Short summary.
Args:
human_detection (np.ndarray): Human detection result.
result (type): The predicted label of each human proposal.
Returns:
tuple: Tuple of human proposal, label name and label score.
"""
results = []
if result is None:
return None
for prop, res in zip(human_detection, result):
res.sort(key=lambda x: -x[1])
results.append((prop, [x[0] for x in res], [x[1] for x in res]))
return results
# 构造数据处理需要的results
def get_timestep_result(frame_dir, timestamp, clip_len, frame_interval, FPS):
result = {}
result["frame_dir"] = frame_dir
frame_num = len(os.listdir(frame_dir))
dir_name = frame_dir.split("/")[-1]
result["video_id"] = dir_name
result['timestamp'] = timestamp
timestamp_str = '{:04d}'.format(timestamp)
img_key = dir_name + "," + timestamp_str
result['img_key'] = img_key
result['shot_info'] = (1, frame_num)
result['fps'] = FPS
result['suffix'] = '{:05}.jpg'
result['timestamp_start'] = 1
result['timestamp_end'] = int(frame_num / result['fps'])
return result
def detection_inference(frame_paths, output_dir, model_name, weights_path):
"""Detect human boxes given frame paths.
Args:
frame_paths (list[str]): The paths of frames to do detection inference.
Returns:
list[np.ndarray]: The human detection results.
"""
detection_cfg = ppdet.model_zoo.get_config_file(model_name)
detection_cfg = ppdet.core.workspace.load_config(detection_cfg)
detection_trainer = ppdet.engine.Trainer(detection_cfg, mode='test')
detection_trainer.load_weights(weights_path)
print('Performing Human Detection for each frame')
detection_trainer.predict(frame_paths, output_dir=output_dir, save_txt=True)
print("finish object detection")
results = []
for frame_path in frame_paths:
(file_dir, file_name) = os.path.split(frame_path)
(file_path, ext) = os.path.splitext(frame_path)
txt_file_name = file_name.replace(ext, ".txt")
txt_path = os.path.join(output_dir, txt_file_name)
results.append(txt_path)
return results
def get_detection_result(txt_file_path, img_h, img_w, person_det_score_thr):
"""
根据检测结果文件得到图像中人的检测框(proposals)和置信度(scores)
txt_file_path:检测结果存放路径
img_h:图像高度
img_w:图像宽度
"""
proposals = []
scores = []
with open(txt_file_path, 'r') as detection_file:
lines = detection_file.readlines()
for line in lines: # person 0.9842637181282043 0.0 469.1407470703125 944.7770385742188 831.806396484375
items = line.split(" ")
if items[0] != 'person': #只要人
continue
score = items[1]
if (float)(score) < person_det_score_thr:
continue
x1 = (float(items[2])) / img_w
y1 = ((float)(items[3])) / img_h
box_w = ((float)(items[4]))
box_h = ((float)(items[5]))
x2 = (float(items[2]) + box_w) / img_w
y2 = (float(items[3]) + box_h) / img_h
scores.append(score)
proposals.append([x1, y1, x2, y2])
return np.array(proposals), np.array(scores)
@paddle.no_grad()
def main(args):
config = get_config(args.config, show=False) #parse config file
# extract frames from video
video_path = args.video_path
frame_dir = 'tmp_frames'
frame_paths, frames, FPS = frame_extraction(video_path, frame_dir)
num_frame = len(frame_paths) #视频秒数*FPS
assert num_frame != 0
print("Frame Number:", num_frame)
# 帧图像高度和宽度
h, w, _ = frames[0].shape
# Get clip_len, frame_interval and calculate center index of each clip
data_process_pipeline = build_pipeline(config.PIPELINE.test) #测试时输出处理流水配置
clip_len = config.PIPELINE.test.sample['clip_len']
assert clip_len % 2 == 0, 'We would like to have an even clip_len'
frame_interval = config.PIPELINE.test.sample['frame_interval']
# 此处关键帧每秒取一个
clip_len = config.PIPELINE.test.sample['clip_len']
assert clip_len % 2 == 0, 'We would like to have an even clip_len'
frame_interval = config.PIPELINE.test.sample['frame_interval']
window_size = clip_len * frame_interval
timestamps = np.arange(window_size // 2, (num_frame + 1 - window_size // 2),
args.predict_stepsize)
print("timetamps number:", len(timestamps))
# get selected frame list according to timestamps
selected_frame_list = []
for timestamp in timestamps:
selected_frame_list.append(frame_paths[timestamp - 1])
# Load label_map
label_map_path = config.DATASET.test['label_file']
categories, class_whitelist = read_labelmap(open(label_map_path))
label_map = {}
for item in categories:
id = item['id']
name = item['name']
label_map[id] = name
# Construct model.
if config.MODEL.backbone.get('pretrained'):
config.MODEL.backbone.pretrained = '' # disable pretrain model init
model = build_model(config.MODEL)
model.eval()
state_dicts = load(args.weights)
model.set_state_dict(state_dicts)
detection_result_dir = 'tmp_detection'
detection_model_name = args.detection_model_name
detection_model_weights = args.detection_model_weights
detection_txt_list = detection_inference(selected_frame_list,
detection_result_dir,
detection_model_name,
detection_model_weights)
assert len(detection_txt_list) == len(timestamps)
print('Performing SpatioTemporal Action Detection for each clip')
human_detections = []
predictions = []
index = 0
for timestamp, detection_txt_path in zip(timestamps, detection_txt_list):
proposals, scores = get_detection_result(
detection_txt_path, h, w,
(float)(config.DATASET.test['person_det_score_thr']))
if proposals.shape[0] == 0:
predictions.append(None)
human_detections.append(None)
continue
human_detections.append(proposals)
result = get_timestep_result(frame_dir,
timestamp,
clip_len,
frame_interval,
FPS=FPS)
result["proposals"] = proposals
result["scores"] = scores
new_result = data_process_pipeline(result)
proposals = new_result['proposals']
img_slow = new_result['imgs'][0]
img_slow = img_slow[np.newaxis, :]
img_fast = new_result['imgs'][1]
img_fast = img_fast[np.newaxis, :]
proposals = proposals[np.newaxis, :]
scores = scores[np.newaxis, :]
img_shape = np.asarray(new_result['img_shape'])
img_shape = img_shape[np.newaxis, :]
data = [
paddle.to_tensor(img_slow, dtype='float32'),
paddle.to_tensor(img_fast, dtype='float32'),
paddle.to_tensor(proposals, dtype='float32'), scores,
paddle.to_tensor(img_shape, dtype='int32')
]
with paddle.no_grad():
result = model(data, mode='infer')
result = result[0]
prediction = []
person_num = proposals.shape[1]
# N proposals
for i in range(person_num):
prediction.append([])
# Perform action score thr
for i in range(len(result)):
if i + 1 not in class_whitelist:
continue
for j in range(person_num):
if result[i][j, 4] > config.MODEL.head['action_thr']:
prediction[j].append((label_map[i + 1], result[i][j,
4]))
predictions.append(prediction)
index = index + 1
if index % 10 == 0:
print(index, "/", len(timestamps))
results = []
for human_detection, prediction in zip(human_detections, predictions):
results.append(pack_result(human_detection, prediction))
def dense_timestamps(timestamps, n):
"""Make it nx frames."""
old_frame_interval = (timestamps[1] - timestamps[0])
start = timestamps[0] - old_frame_interval / n * (n - 1) / 2
new_frame_inds = np.arange(
len(timestamps) * n) * old_frame_interval / n + start
return new_frame_inds.astype(np.int)
dense_n = int(args.predict_stepsize / args.output_stepsize) #30
frames = [
cv2.imread(frame_paths[i - 1])
for i in dense_timestamps(timestamps, dense_n)
]
vis_frames = visualize(frames, results)
try:
import moviepy.editor as mpy
except ImportError:
raise ImportError('Please install moviepy to enable output file')
vid = mpy.ImageSequenceClip([x[:, :, ::-1] for x in vis_frames],
fps=args.output_fps)
vid.write_videofile(args.out_filename)
print("finish write !")
# delete tmp files and dirs
shutil.rmtree(frame_dir)
shutil.rmtree(detection_result_dir)
if __name__ == '__main__':
args = parse_args() #解析参数
main(args)