Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

尝试matting中的pp-mattingv2模型测试以及训练报错 #3752

Open
1 task done
yuqilol opened this issue Jul 10, 2024 · 5 comments
Open
1 task done

尝试matting中的pp-mattingv2模型测试以及训练报错 #3752

yuqilol opened this issue Jul 10, 2024 · 5 comments
Labels
question Further information is requested

Comments

@yuqilol
Copy link

yuqilol commented Jul 10, 2024

问题确认 Search before asking

  • 我已经搜索过问题,但是没有找到解答。I have searched the question and found no related answer.

请提出你的问题 Please ask your question

问题一:我尝试直接使用demo却没有出现结果
问题二:我尝试训练出现trans_info为负值的错误
使用环境:linux 3090 python 3.9
配置环境:Package Version


anyio 4.4.0
astor 0.8.1
Babel 2.15.0
bce-python-sdk 0.9.17
blinker 1.8.2
certifi 2024.7.4
charset-normalizer 3.3.2
click 8.1.7
contourpy 1.2.1
cycler 0.12.1
decorator 5.1.1
exceptiongroup 1.2.1
filelock 3.15.4
Flask 3.0.3
flask-babel 4.0.0
fonttools 4.53.0
future 1.0.0
h11 0.14.0
httpcore 1.0.5
httpx 0.27.0
idna 3.7
imageio 2.34.2
importlib_metadata 8.0.0
importlib_resources 6.4.0
itsdangerous 2.2.0
Jinja2 3.1.4
joblib 1.4.2
kiwisolver 1.4.5
lazy_loader 0.4
llvmlite 0.43.0
MarkupSafe 2.1.5
matplotlib 3.9.0
networkx 3.2.1
numba 0.60.0
numpy 2.0.0
opencv-python 4.10.0.84
opt-einsum 3.3.0
packaging 24.1
paddlepaddle 2.6.1
paddleseg 2.8.0
pandas 2.2.2
pillow 10.4.0
pip 24.0
prettytable 3.10.0
protobuf 5.27.2
psutil 6.0.0
pycryptodome 3.20.0
PyMatting 1.1.12
pyparsing 3.1.2
python-dateutil 2.9.0.post0
pytz 2024.1
PyYAML 6.0.1
rarfile 4.2
requests 2.32.3
scikit-image 0.24.0
scikit-learn 1.5.0
scipy 1.13.1
setuptools 69.5.1
six 1.16.0
sniffio 1.3.1
threadpoolctl 3.5.0
tifffile 2024.7.2
tqdm 4.66.4
typing_extensions 4.12.2
tzdata 2024.1
urllib3 2.2.2
visualdl 2.5.3
wcwidth 0.2.13
Werkzeug 3.0.3
wheel 0.43.0
zipp 3.19.2
————————————
问题二报错:
Traceback (most recent call last):
File "/data1/home/pengyuling/paddle-seg/PaddleSeg-release-2.9/Matting/tools/train.py", line 220, in
main(args)
File "/data1/home/pengyuling/paddle-seg/PaddleSeg-release-2.9/Matting/tools/train.py", line 198, in main
train(
File "/data1/home/pengyuling/paddle-seg/PaddleSeg-release-2.9/Matting/tools/../ppmatting/core/train.py", line 307, in train
metrics_data = evaluate(
File "/data1/home/pengyuling/paddle-seg/PaddleSeg-release-2.9/Matting/tools/../ppmatting/core/val.py", line 120, in evaluate
alpha_pred = reverse_transform(alpha_pred, data['trans_info'])
File "/data1/home/pengyuling/paddle-seg/PaddleSeg-release-2.9/Matting/tools/../ppmatting/core/val.py", line 46, in reverse_transform
alpha = F.interpolate(alpha, [h, w], mode='bilinear')
File "/data1/home/pengyuling/.conda/envs/paddle_seg/lib/python3.9/site-packages/paddle/nn/functional/common.py", line 520, in interpolate
assert (
AssertionError: Each dimension size given in out_shape must be greater than 0.

@yuqilol yuqilol added the question Further information is requested label Jul 10, 2024
@yuqilol
Copy link
Author

yuqilol commented Jul 10, 2024

问题一
指令:python tools/predict.py --config configs/ppmattingv2/ppmattingv2-stdc1-human_512.yml --model_path checkpoint/ppmattingv2-stdc1-human_512.pdparams --image_path demo/human.jpg --save_dir ./output/results --fg_estimate True
输出结果:2024-07-10 15:03:57 [INFO] Set device: cpu
2024-07-10 15:03:57 [INFO] Use the following config to build model
model:
backbone:
pretrained: https://bj.bcebos.com/paddleseg/dygraph/PP_STDCNet1.tar.gz
type: STDC1
decoder_channels:

  • 128
  • 96
  • 64
  • 32
  • 16
    dpp_merge_type: add
    dpp_output_channel: 256
    head_channel: 8
    type: PPMattingV2
    2024-07-10 15:03:57 [INFO] Loading pretrained model from https://bj.bcebos.com/paddleseg/dygraph/PP_STDCNet1.tar.gz
    2024-07-10 15:03:57 [INFO] There are 145/145 variables loaded into STDCNet.
    2024-07-10 15:03:57 [INFO] Number of predict images = 1
    2024-07-10 15:03:57 [INFO] Loading pretrained model from checkpoint/ppmattingv2-stdc1-human_512.pdparams
    2024-07-10 15:03:57 [INFO] There are 485/485 variables loaded into PPMattingV2.
    2024-07-10 15:03:57 [INFO] Start to predict...
    size : [128, 248]
    size : [256, 496]
    1/1 [==============================] - 1s 1s/step - preprocess_cost: 0.0193 - infer_cost cost: 1.1970 - postprocess_cost: 0.1122

@yuqilol
Copy link
Author

yuqilol commented Jul 10, 2024

human_alpha
human_rgba

@yuqilol
Copy link
Author

yuqilol commented Jul 10, 2024

输出结果如上

@yuqilol
Copy link
Author

yuqilol commented Jul 10, 2024

问题二新的报错内存泄漏:
Traceback (most recent call last):
File "/data1/home/pengyuling/paddle-seg/PaddleSeg-release-2.9/Matting/tools/train.py", line 220, in
main(args)
File "/data1/home/pengyuling/paddle-seg/PaddleSeg-release-2.9/Matting/tools/train.py", line 198, in main
train(
File "/data1/home/pengyuling/paddle-seg/PaddleSeg-release-2.9/Matting/tools/../ppmatting/core/train.py", line 307, in train
metrics_data = evaluate(
File "/data1/home/pengyuling/paddle-seg/PaddleSeg-release-2.9/Matting/tools/../ppmatting/core/val.py", line 120, in evaluate
alpha_pred = reverse_transform(alpha_pred, data['trans_info'])
File "/data1/home/pengyuling/paddle-seg/PaddleSeg-release-2.9/Matting/tools/../ppmatting/core/val.py", line 46, in reverse_transform
alpha = F.interpolate(alpha, [h, w], mode='bilinear')
File "/data1/home/pengyuling/.conda/envs/paddle_seg/lib/python3.9/site-packages/paddle/nn/functional/common.py", line 642, in interpolate
out = _C_ops.bilinear_interp(
MemoryError: (ResourceExhausted) Fail to alloc memory of 273663081118172160 size, error code is 12.
[Hint: Expected error == 0, but received error:12 != 0:0.] (at /paddle/paddle/fluid/memory/allocation/cpu_allocator.cc:50)

@yuqilol
Copy link
Author

yuqilol commented Jul 10, 2024

怀疑是这两行的原因
2024-07-10 17:12:01 [INFO] Set device: cpu
2024-07-10 17:12:01 [INFO] Use the following config to build model

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
question Further information is requested
Projects
None yet
Development

No branches or pull requests

1 participant