-
Notifications
You must be signed in to change notification settings - Fork 1.7k
/
ohem_cross_entropy_loss.py
135 lines (116 loc) · 5.28 KB
/
ohem_cross_entropy_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
from paddle import nn
import paddle.nn.functional as F
from paddleseg.cvlibs import manager
_IS_NPU = "npu" in paddle.get_device()
@manager.LOSSES.add_component
class OhemCrossEntropyLoss(nn.Layer):
"""
Implements the ohem cross entropy loss function.
Args:
thresh (float, optional): The threshold of ohem. Default: 0.7.
min_kept (int, optional): The min number to keep in loss computation. Default: 10000.
ignore_index (int64, optional): Specifies a target value that is ignored
and does not contribute to the input gradient. Default ``255``.
weight (tuple|list|ndarray|Tensor, optional): A manual rescaling weight
given to each class. Its length must be equal to the number of classes.
Default ``None``.
"""
def __init__(self,
thresh=0.7,
min_kept=10000,
ignore_index=255,
weight=None):
super(OhemCrossEntropyLoss, self).__init__()
self.thresh = thresh
self.min_kept = min_kept
self.ignore_index = ignore_index
self.EPS = 1e-5
if weight is not None:
self.weight = paddle.to_tensor(weight, dtype='float32')
else:
self.weight = None
def forward(self, logit, label):
"""
Forward computation.
Args:
logit (Tensor): Logit tensor, the data type is float32, float64. Shape is
(N, C), where C is number of classes, and if shape is more than 2D, this
is (N, C, D1, D2,..., Dk), k >= 1.
label (Tensor): Label tensor, the data type is int64. Shape is (N), where each
value is 0 <= label[i] <= C-1, and if shape is more than 2D, this is
(N, D1, D2,..., Dk), k >= 1.
"""
if self.weight is not None and logit.shape[1] != len(self.weight):
raise ValueError(
'The number of weights = {} must be the same as the number of classes = {}.'
.format(len(self.weight), logit.shape[1]))
if len(label.shape) != len(logit.shape):
label = paddle.unsqueeze(label, 1)
# get the label after ohem
n, c, h, w = logit.shape
label = label.reshape((-1, )).astype('int64')
valid_mask = (label != self.ignore_index).astype('int64')
num_valid = valid_mask.sum()
label = label * valid_mask
prob = F.softmax(logit, axis=1)
prob = prob.transpose((1, 0, 2, 3)).reshape((c, -1))
if self.min_kept < num_valid and num_valid > 0:
# let the value which ignored greater than 1
prob = prob + (1 - valid_mask).astype(prob.dtype)
# get the prob of relevant label
label_onehot = F.one_hot(label, c)
label_onehot = label_onehot.transpose((1, 0))
prob = prob * label_onehot
prob = paddle.sum(prob, axis=0)
threshold = self.thresh
if self.min_kept > 0:
index = prob.argsort()
if hasattr(paddle.Tensor, "contiguous"):
threshold_index = index[min(len(index), self.min_kept) -
1].contiguous()
else:
threshold_index = index[min(len(index), self.min_kept) - 1]
threshold_index = int(threshold_index)
if prob[threshold_index] > self.thresh:
threshold = prob[threshold_index]
kept_mask = (prob < threshold).astype('int64')
label = label * kept_mask
valid_mask = valid_mask * kept_mask
# make the invalid region as ignore
label = label + (1 - valid_mask) * self.ignore_index
label = label.reshape((n, 1, h, w))
valid_mask = valid_mask.reshape((n, 1, h, w)).astype('float32')
if _IS_NPU:
logit = F.log_softmax(logit, axis=1)
loss = F.nll_loss(logit,
label.squeeze(1),
weight=self.weight,
ignore_index=self.ignore_index,
reduction='none')
loss = loss.unsqueeze(1)
else:
loss = F.cross_entropy(logit,
label,
weight=self.weight,
ignore_index=self.ignore_index,
reduction='none',
axis=1)
loss = loss * valid_mask
avg_loss = paddle.mean(loss) / (paddle.mean(valid_mask) + self.EPS)
label.stop_gradient = True
valid_mask.stop_gradient = True
return avg_loss