|
| 1 | +import sys |
| 2 | + |
| 3 | +import matplotlib.pyplot as plt |
| 4 | +import numpy as np |
| 5 | +import paddle |
| 6 | +from scipy.io import loadmat |
| 7 | + |
| 8 | +sys.path.insert(0, "pycamotk") |
| 9 | +from pyCaMOtk.create_dbc_strct import create_dbc_strct |
| 10 | +from pyCaMOtk.create_fem_resjac import create_fem_resjac |
| 11 | +from pyCaMOtk.create_femsp_cg import create_femsp_cg |
| 12 | +from pyCaMOtk.create_mesh_hcube import mesh_hcube |
| 13 | +from pyCaMOtk.geom_mltdim import Hypercube |
| 14 | +from pyCaMOtk.geom_mltdim import Simplex |
| 15 | +from pyCaMOtk.LinearElasticityHandCode import * |
| 16 | +from pyCaMOtk.mesh import Mesh |
| 17 | +from pyCaMOtk.mesh import get_gdof_from_bndtag |
| 18 | +from pyCaMOtk.solve_fem import solve_fem |
| 19 | +from pyCaMOtk.visualize_fem import visualize_fem |
| 20 | + |
| 21 | +sys.path.insert(0, "source") |
| 22 | +import setup_prob_eqn_handcode |
| 23 | +import TensorFEMCore |
| 24 | +from GCNNModel import LinearElasticityNet2D |
| 25 | +from GCNNModel import e2vcg2connectivity |
| 26 | +from TensorFEMCore import Double |
| 27 | +from TensorFEMCore import ReshapeFix |
| 28 | +from TensorFEMCore import solve_fem_GCNN |
| 29 | + |
| 30 | +sys.path.insert(0, "utils") |
| 31 | +from utils import Data |
| 32 | + |
| 33 | +paddle.seed(0) |
| 34 | + |
| 35 | + |
| 36 | +class LinearElasticity: |
| 37 | + def __init__(self) -> None: |
| 38 | + # GCNN model |
| 39 | + self.model = LinearElasticityNet2D() |
| 40 | + |
| 41 | + def train( |
| 42 | + self, |
| 43 | + Ufem, |
| 44 | + ndof, |
| 45 | + xcg, |
| 46 | + connectivity, |
| 47 | + LossF, |
| 48 | + tol, |
| 49 | + maxit, |
| 50 | + dbc, |
| 51 | + ndim, |
| 52 | + nnode, |
| 53 | + etype, |
| 54 | + e2vcg, |
| 55 | + e2bnd, |
| 56 | + ): |
| 57 | + ii = 0 |
| 58 | + Graph = [] |
| 59 | + Ue = Double(Ufem.flatten().reshape(ndof, 1)) |
| 60 | + fcn_id = Double(np.asarray([ii])) |
| 61 | + Ue_aug = paddle.concat((fcn_id, Ue), axis=0) |
| 62 | + xcg_gcnn = np.zeros((2, 2 * xcg.shape[1])) |
| 63 | + for i in range(xcg.shape[1]): |
| 64 | + xcg_gcnn[:, 2 * i] = xcg[:, i] |
| 65 | + xcg_gcnn[:, 2 * i + 1] = xcg[:, i] |
| 66 | + Uin = Double(xcg_gcnn.T) |
| 67 | + graph = Data(x=Uin, y=Ue_aug, edge_index=connectivity) |
| 68 | + Graph.append(graph) |
| 69 | + DataList = [[Graph[0]]] |
| 70 | + TrainDataloader = DataList |
| 71 | + [self.model, info] = solve_fem_GCNN( |
| 72 | + TrainDataloader, LossF, self.model, tol, maxit |
| 73 | + ) |
| 74 | + np.save("modelCircleDet.npy", info) |
| 75 | + solution = self.model(Graph[0].to("cuda")) |
| 76 | + solution = ReshapeFix(paddle.clone(solution), [len(solution.flatten()), 1], "C") |
| 77 | + solution[dbc.dbc_idx] = Double(dbc.dbc_val.reshape([len(dbc.dbc_val), 1])) |
| 78 | + solution = solution.detach().cpu().numpy() |
| 79 | + xcg_defGCNN = xcg + np.reshape(solution, [ndim, nnode], order="F") |
| 80 | + msh_defGCNN = Mesh(etype, xcg_defGCNN, e2vcg, e2bnd, ndim) |
| 81 | + uabsGCNN = np.sqrt( |
| 82 | + solution[[i for i in range(ndof) if i % 2 == 0]] ** 2 |
| 83 | + + solution[[i for i in range(ndof) if i % 2 != 0]] ** 2 |
| 84 | + ) |
| 85 | + return msh_defGCNN, uabsGCNN |
| 86 | + |
| 87 | + def plot_hard_way(self, msh_defGCNN, uabsGCNN, e2vcg, msh_def, uabs): |
| 88 | + fig = plt.figure() |
| 89 | + ax1 = plt.subplot(1, 2, 1) |
| 90 | + visualize_fem( |
| 91 | + ax1, msh_defGCNN, uabsGCNN[e2vcg], {"plot_elem": False, "nref": 1}, [] |
| 92 | + ) |
| 93 | + ax1.set_title("GCNN solution") |
| 94 | + ax2 = plt.subplot(1, 2, 2) |
| 95 | + visualize_fem(ax2, msh_def, uabs[e2vcg], {"plot_elem": False, "nref": 1}, []) |
| 96 | + ax2.set_title("FEM solution") |
| 97 | + fig.tight_layout(pad=3.0) |
| 98 | + plt.savefig("GCNN.pdf", bbox_inches="tight") |
| 99 | + |
| 100 | + def plot_square(self, msh_defGCNN, uabsGCNN, e2vcg, msh_def, uabs): |
| 101 | + plt.figure() |
| 102 | + ax1 = plt.subplot(1, 1, 1) |
| 103 | + _, cbar1 = visualize_fem( |
| 104 | + ax1, msh_defGCNN, uabsGCNN[e2vcg], {"plot_elem": False, "nref": 4}, [] |
| 105 | + ) |
| 106 | + ax1.axis("off") |
| 107 | + cbar1.remove() |
| 108 | + plt.margins(0, 0) |
| 109 | + plt.savefig( |
| 110 | + "gcnn_2dlinearelasticity_square.png", |
| 111 | + bbox_inches="tight", |
| 112 | + pad_inches=0, |
| 113 | + dpi=800, |
| 114 | + ) |
| 115 | + |
| 116 | + plt.figure() |
| 117 | + ax2 = plt.subplot(1, 1, 1) |
| 118 | + _, cbar2 = visualize_fem( |
| 119 | + ax2, msh_def, uabs[e2vcg], {"plot_elem": False, "nref": 4}, [] |
| 120 | + ) |
| 121 | + ax2.axis("off") |
| 122 | + cbar2.remove() |
| 123 | + plt.margins(0, 0) |
| 124 | + plt.savefig( |
| 125 | + "fem_2dlinearelasticity_square.png", |
| 126 | + bbox_inches="tight", |
| 127 | + pad_inches=0, |
| 128 | + dpi=800, |
| 129 | + ) |
| 130 | + |
| 131 | + def hard_way(self): |
| 132 | + # FEM |
| 133 | + etype = "simplex" |
| 134 | + ndim = 2 |
| 135 | + dat = loadmat("./msh/cylshk0a-simp-nref0p1.mat") |
| 136 | + xcg = dat["xcg"] / 10 |
| 137 | + e2vcg = dat["e2vcg"] - 1 |
| 138 | + e2bnd = dat["e2bnd"] - 1 |
| 139 | + msh = Mesh(etype, xcg, e2vcg, e2bnd, ndim) |
| 140 | + xcg = msh.xcg |
| 141 | + e2vcg = msh.e2vcg |
| 142 | + e2bnd = msh.e2bnd |
| 143 | + porder = msh.porder |
| 144 | + [ndim, nnode] = xcg.shape |
| 145 | + nvar = ndim |
| 146 | + ndof = nnode * nvar |
| 147 | + |
| 148 | + lam = lambda x, el: 1 |
| 149 | + mu = lambda x, el: 1 |
| 150 | + f = lambda x, el: np.zeros([ndim, 1]) |
| 151 | + bnd2nbc = [0.0, 1.0, 2.0, 3.0, 4.0] |
| 152 | + tb = lambda x, n, bnd, el, fc: np.asarray([[2], [0]]) * ( |
| 153 | + bnd == 2 or bnd == 2.0 or (bnd - 2) ** 2 < 1e-8 |
| 154 | + ) + np.asarray([[0], [0]]) |
| 155 | + prob = setup_linelast_base_handcode(ndim, lam, mu, f, tb, bnd2nbc) |
| 156 | + # Create finite element space |
| 157 | + femsp = create_femsp_cg(prob, msh, porder, e2vcg, porder, e2vcg) |
| 158 | + ldof2gdof = femsp.ldof2gdof_var.ldof2gdof |
| 159 | + geo = Simplex(ndim, porder) |
| 160 | + f2v = geo.f2n |
| 161 | + dbc_idx = get_gdof_from_bndtag( |
| 162 | + [i for i in range(ndim)], [0], nvar, ldof2gdof, e2bnd, f2v |
| 163 | + ) |
| 164 | + dbc_idx.sort() |
| 165 | + dbc_idx = np.asarray(dbc_idx) |
| 166 | + dbc_val = 0 * dbc_idx |
| 167 | + dbc = create_dbc_strct(ndof, dbc_idx, dbc_val) |
| 168 | + femsp.dbc = dbc |
| 169 | + tol = 1.0e-8 |
| 170 | + maxit = 100000 |
| 171 | + [Ufem, info] = solve_fem( |
| 172 | + "cg", |
| 173 | + msh.transfdatacontiguous, |
| 174 | + femsp.elem, |
| 175 | + femsp.elem_data, |
| 176 | + femsp.ldof2gdof_eqn.ldof2gdof, |
| 177 | + femsp.ldof2gdof_var.ldof2gdof, |
| 178 | + msh.e2e, |
| 179 | + femsp.spmat, |
| 180 | + dbc, |
| 181 | + None, |
| 182 | + tol, |
| 183 | + maxit, |
| 184 | + ) |
| 185 | + |
| 186 | + xcg_def = xcg + np.reshape(Ufem, [ndim, nnode], order="F") |
| 187 | + msh_def = Mesh(etype, xcg_def, e2vcg, e2bnd, ndim) |
| 188 | + uabs = np.sqrt( |
| 189 | + Ufem[[i for i in range(ndof) if i % 2 == 0]] ** 2 |
| 190 | + + Ufem[[i for i in range(ndof) if i % 2 != 0]] ** 2 |
| 191 | + ) |
| 192 | + fig = plt.figure() |
| 193 | + ax1 = plt.subplot(1, 1, 1) |
| 194 | + visualize_fem(ax1, msh_def, uabs[e2vcg], {"plot_elem": False, "nref": 1}, []) |
| 195 | + ax1.set_title("FEM solution") |
| 196 | + fig.tight_layout(pad=3.0) |
| 197 | + |
| 198 | + idx_xcg = [ |
| 199 | + i |
| 200 | + for i in range(xcg.shape[1]) |
| 201 | + if 2 * i not in dbc_idx and 2 * i + 1 not in dbc_idx |
| 202 | + ] |
| 203 | + |
| 204 | + obsidx = np.asarray([5, 11, 26, 32, 38]) # max is 9 |
| 205 | + |
| 206 | + idx_whole = [] |
| 207 | + for i in obsidx: |
| 208 | + idx_whole.append(2 * i) |
| 209 | + idx_whole.append(2 * i + 1) |
| 210 | + obsxcg = msh_def.xcg[:, obsidx] |
| 211 | + ax1.plot(obsxcg[0, :], obsxcg[1, :], "o") |
| 212 | + |
| 213 | + dbc_idx_new = np.hstack((dbc_idx, idx_whole)) |
| 214 | + dbc_val_new = Ufem[dbc_idx_new] |
| 215 | + dbc = create_dbc_strct(msh.xcg.shape[1] * nvar, dbc_idx_new, dbc_val_new) |
| 216 | + |
| 217 | + Src_new = self.model.source |
| 218 | + K_new = paddle.to_tensor([[0], [0]], dtype="float32").reshape((2,)) |
| 219 | + parsfuncI = lambda x: paddle.concat((Src_new[0:1], Src_new[1:2], K_new), axis=0) |
| 220 | + # GCNN |
| 221 | + connectivity = e2vcg2connectivity(e2vcg, "ele") |
| 222 | + prob = setup_prob_eqn_handcode.setup_linelast_base_handcode( |
| 223 | + ndim, lam, mu, f, tb, bnd2nbc |
| 224 | + ) |
| 225 | + femsp_gcnn = create_femsp_cg(prob, msh, porder, e2vcg, porder, e2vcg, dbc) |
| 226 | + LossF = [] |
| 227 | + fcn = lambda u_: TensorFEMCore.create_fem_resjac( |
| 228 | + "cg", |
| 229 | + u_, |
| 230 | + msh.transfdatacontiguous, |
| 231 | + femsp_gcnn.elem, |
| 232 | + femsp_gcnn.elem_data, |
| 233 | + femsp_gcnn.ldof2gdof_eqn.ldof2gdof, |
| 234 | + femsp_gcnn.ldof2gdof_var.ldof2gdof, |
| 235 | + msh.e2e, |
| 236 | + femsp_gcnn.spmat, |
| 237 | + dbc, |
| 238 | + [i for i in range(ndof) if i not in dbc_idx], |
| 239 | + parsfuncI, |
| 240 | + None, |
| 241 | + ) |
| 242 | + LossF.append(fcn) |
| 243 | + msh_defGCNN, uabsGCNN = self.train( |
| 244 | + Ufem, |
| 245 | + ndof, |
| 246 | + xcg, |
| 247 | + connectivity, |
| 248 | + LossF, |
| 249 | + tol, |
| 250 | + maxit, |
| 251 | + dbc, |
| 252 | + ndim, |
| 253 | + nnode, |
| 254 | + etype, |
| 255 | + e2vcg, |
| 256 | + e2bnd, |
| 257 | + ) |
| 258 | + self.plot_hard_way(msh_defGCNN, uabsGCNN, e2vcg, msh_def, uabs) |
| 259 | + |
| 260 | + def main_square(self): |
| 261 | + # FEM |
| 262 | + nvar = 2 |
| 263 | + etype = "hcube" |
| 264 | + lims = np.asarray([[0, 1], [0, 1]]) |
| 265 | + nel = [2, 2] |
| 266 | + porder = 2 |
| 267 | + nf = 4 |
| 268 | + msh = mesh_hcube(etype, lims, nel, porder).getmsh() |
| 269 | + xcg = msh.xcg |
| 270 | + e2vcg = msh.e2vcg |
| 271 | + e2bnd = msh.e2bnd |
| 272 | + porder = msh.porder |
| 273 | + [ndim, nnode] = xcg.shape |
| 274 | + nvar = ndim |
| 275 | + ndof = nnode * nvar |
| 276 | + |
| 277 | + lam = lambda x, el: 1 |
| 278 | + mu = lambda x, el: 1 |
| 279 | + f = lambda x, el: np.zeros([ndim, 1]) |
| 280 | + bnd2nbc = np.asarray([0, 1, 2, 3]) |
| 281 | + tb = lambda x, n, bnd, el, fc: np.asarray([[0.5], [0]]) * ( |
| 282 | + (bnd - 2) ** 2 < 1e-8 |
| 283 | + ) + np.asarray([[0], [0]]) |
| 284 | + prob = setup_linelast_base_handcode(ndim, lam, mu, f, tb, bnd2nbc) |
| 285 | + # Create finite element space |
| 286 | + femsp = create_femsp_cg(prob, msh, porder, e2vcg, porder, e2vcg) |
| 287 | + ldof2gdof = femsp.ldof2gdof_var.ldof2gdof |
| 288 | + geo = Hypercube(ndim, porder) |
| 289 | + f2v = geo.f2n |
| 290 | + dbc_idx = get_gdof_from_bndtag( |
| 291 | + [i for i in range(ndim)], [0], nvar, ldof2gdof, e2bnd, f2v |
| 292 | + ) |
| 293 | + dbc_idx.sort() |
| 294 | + dbc_idx = np.asarray(dbc_idx) |
| 295 | + dbc_val = 0 * dbc_idx |
| 296 | + dbc = create_dbc_strct(ndof, dbc_idx, dbc_val) |
| 297 | + femsp.dbc = dbc |
| 298 | + tol = 1.0e-8 |
| 299 | + maxit = 4500 |
| 300 | + |
| 301 | + [Ufem, info] = solve_fem( |
| 302 | + "cg", |
| 303 | + msh.transfdatacontiguous, |
| 304 | + femsp.elem, |
| 305 | + femsp.elem_data, |
| 306 | + femsp.ldof2gdof_eqn.ldof2gdof, |
| 307 | + femsp.ldof2gdof_var.ldof2gdof, |
| 308 | + msh.e2e, |
| 309 | + femsp.spmat, |
| 310 | + dbc, |
| 311 | + None, |
| 312 | + tol, |
| 313 | + maxit, |
| 314 | + ) |
| 315 | + |
| 316 | + xcg_def = xcg + np.reshape(Ufem, [ndim, nnode], order="F") |
| 317 | + msh_def = Mesh(etype, xcg_def, e2vcg, e2bnd, ndim) |
| 318 | + uabs = np.sqrt( |
| 319 | + Ufem[[i for i in range(ndof) if i % 2 == 0]] ** 2 |
| 320 | + + Ufem[[i for i in range(ndof) if i % 2 != 0]] ** 2 |
| 321 | + ) |
| 322 | + # GCNN |
| 323 | + connectivity = e2vcg2connectivity(e2vcg, "ele") |
| 324 | + prob = setup_prob_eqn_handcode.setup_linelast_base_handcode( |
| 325 | + ndim, lam, mu, f, tb, bnd2nbc |
| 326 | + ) |
| 327 | + femsp_gcnn = create_femsp_cg(prob, msh, porder, e2vcg, porder, e2vcg, dbc) |
| 328 | + LossF = [] |
| 329 | + fcn = lambda u_: TensorFEMCore.create_fem_resjac( |
| 330 | + "cg", |
| 331 | + u_, |
| 332 | + msh.transfdatacontiguous, |
| 333 | + femsp_gcnn.elem, |
| 334 | + femsp_gcnn.elem_data, |
| 335 | + femsp_gcnn.ldof2gdof_eqn.ldof2gdof, |
| 336 | + femsp_gcnn.ldof2gdof_var.ldof2gdof, |
| 337 | + msh.e2e, |
| 338 | + femsp_gcnn.spmat, |
| 339 | + dbc, |
| 340 | + ) |
| 341 | + fcn_fem = lambda u_: create_fem_resjac( |
| 342 | + "cg", |
| 343 | + u_, |
| 344 | + msh.transfdatacontiguous, |
| 345 | + femsp.elem, |
| 346 | + femsp.elem_data, |
| 347 | + femsp.ldof2gdof_eqn.ldof2gdof, |
| 348 | + femsp.ldof2gdof_var.ldof2gdof, |
| 349 | + msh.e2e, |
| 350 | + femsp.spmat, |
| 351 | + dbc, |
| 352 | + ) |
| 353 | + LossF.append(fcn) |
| 354 | + msh_defGCNN, uabsGCNN = self.train( |
| 355 | + Ufem, |
| 356 | + ndof, |
| 357 | + xcg, |
| 358 | + connectivity, |
| 359 | + LossF, |
| 360 | + tol, |
| 361 | + maxit, |
| 362 | + dbc, |
| 363 | + ndim, |
| 364 | + nnode, |
| 365 | + etype, |
| 366 | + e2vcg, |
| 367 | + e2bnd, |
| 368 | + ) |
| 369 | + self.plot_square(msh_defGCNN, uabsGCNN, e2vcg, msh_def, uabs) |
| 370 | + |
| 371 | + |
| 372 | +if __name__ == "__main__": |
| 373 | + le_obj = LinearElasticity() |
| 374 | + le_obj.hard_way() |
| 375 | + le_obj.main_square() |
0 commit comments