-
Notifications
You must be signed in to change notification settings - Fork 91
/
lesrcnn.py
84 lines (74 loc) · 2.73 KB
/
lesrcnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
#!/usr/bin/env python
# 图像复原模型LESRCNN训练示例脚本
# 执行此脚本前,请确认已正确安装PaddleRS库
import paddlers as pdrs
from paddlers import transforms as T
# 数据集存放目录
DATA_DIR = './data/rssr/'
# 训练集`file_list`文件路径
TRAIN_FILE_LIST_PATH = './data/rssr/train.txt'
# 验证集`file_list`文件路径
EVAL_FILE_LIST_PATH = './data/rssr/val.txt'
# 实验目录,保存输出的模型权重和结果
EXP_DIR = './output/lesrcnn/'
# 下载和解压遥感影像超分辨率数据集
pdrs.utils.download_and_decompress(
'https://paddlers.bj.bcebos.com/datasets/rssr.zip', path='./data/')
# 定义训练和验证时使用的数据变换(数据增强、预处理等)
# 使用Compose组合多种变换方式。Compose中包含的变换将按顺序串行执行
# API说明:https://github.com/PaddlePaddle/PaddleRS/blob/develop/docs/apis/data.md
train_transforms = [
# 从输入影像中裁剪32x32大小的影像块
T.RandomCrop(crop_size=32),
# 以50%的概率实施随机水平翻转
T.RandomHorizontalFlip(prob=0.5),
# 以50%的概率实施随机垂直翻转
T.RandomVerticalFlip(prob=0.5),
# 将数据归一化到[0,1]
T.Normalize(
mean=[0.0, 0.0, 0.0], std=[1.0, 1.0, 1.0])
]
eval_transforms = [
# 将输入影像缩放到256x256大小
T.Resize(target_size=256),
# 验证阶段与训练阶段的数据归一化方式必须相同
T.Normalize(
mean=[0.0, 0.0, 0.0], std=[1.0, 1.0, 1.0])
]
# 分别构建训练和验证所用的数据集
train_dataset = pdrs.datasets.ResDataset(
data_dir=DATA_DIR,
file_list=TRAIN_FILE_LIST_PATH,
transforms=train_transforms,
num_workers=0,
shuffle=True,
sr_factor=4)
eval_dataset = pdrs.datasets.ResDataset(
data_dir=DATA_DIR,
file_list=EVAL_FILE_LIST_PATH,
transforms=eval_transforms,
num_workers=0,
shuffle=False,
sr_factor=4)
# 使用默认参数构建LESRCNN模型
# 目前已支持的模型请参考:https://github.com/PaddlePaddle/PaddleRS/blob/develop/docs/intro/model_zoo.md
# 模型输入参数请参考:https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/tasks/restorer.py
model = pdrs.tasks.res.LESRCNN()
# 执行模型训练
model.train(
num_epochs=10,
train_dataset=train_dataset,
train_batch_size=8,
eval_dataset=eval_dataset,
save_interval_epochs=5,
# 每多少次迭代记录一次日志
log_interval_steps=10,
save_dir=EXP_DIR,
# 初始学习率大小
learning_rate=0.001,
# 是否使用early stopping策略,当精度不再改善时提前终止训练
early_stop=False,
# 是否启用VisualDL日志功能
use_vdl=True,
# 指定从某个检查点继续训练
resume_checkpoint=None)