-
Notifications
You must be signed in to change notification settings - Fork 7.8k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
PPStructure中的SER+RE任务对内存要求是多大? #8602
Comments
现在直接执行 https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.6/ppstructure/docs/inference.md中的SER+RE命令: |
没太关注过内存上限,内存占用大小和输入图像有关,较小的图像,占用内存更小 |
建议GPU用v100,cpu的话16核就够了 |
本次实验图片大小为1.4M,3.9M,这个算大图片还是小图片? |
不应用GPU计算,单纯只考虑CPU版本,这个对于硬件有强制性要求吗?是个什么样的要求? |
就平时办公电脑的配置试试 |
今天按照https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.6/ppstructure/kie/README_ch.md 中4.2的操作实验了389KB,1.8M的图片,发现CPU计算最终需要耗费5G左右才能出SER+RE的结果。 |
This issue has been automatically marked as stale because it has not had recent activity. It will be closed in 7 days if no further activity occurs. Thank you for your contributions. |
请提供下述完整信息以便快速定位问题/Please provide the following information to quickly locate the problem
root@a1793fdcfb9f:/test_ppocr/PaddleOCR/ppstructure# python3 predict_system.py \
[2022-12-12 01:45:13,606] [ INFO] - Already cached /root/.paddlenlp/models/layoutxlm-base-uncased/sentencepiece.bpe.model
[2022-12-12 01:45:14,234] [ INFO] - tokenizer config file saved in /root/.paddlenlp/models/layoutxlm-base-uncased/tokenizer_config.json
[2022-12-12 01:45:14,234] [ INFO] - Special tokens file saved in /root/.paddlenlp/models/layoutxlm-base-uncased/special_tokens_map.json
E1212 01:45:14.372604 768 analysis_config.cc:96] Please compile with gpu to EnableGpu()
E1212 01:45:21.777576 768 analysis_config.cc:96] Please compile with gpu to EnableGpu()
[2022/12/12 01:45:36] ppocr INFO: [0/1] ../pg/HJ0332.jpg
Socket error Event: 32 Error: 10053.
Connection closing...Socket close.
Connection closed by foreign host.
Disconnected from remote host(192.168.1.220) at 10:10:21.
介绍: 尝试使用PaddleOCR的PPStructure的SER+RE对图片进行文字识别,并提取关键信息。
以python 3.7-slim镜像为基础,构建了paddlehub、paddleOCR环境后,下载了ser_vi_layoutxlm_xfund_infer.tar 和 re_vi_layoutxlm_xfund_infer.tar模型,做成镜像,在一台4C8G服务器(4.71G内存可用)上运行该镜像,执行上述命令后,内存飙升,服务器卡死,最后只能通过重启服务器恢复。
HJ0332.jpg大小是397571Byte。
现象: 内存飙升,服务器卡死,ssh都不可用,输入无响应
问题: 请问 ppstructure的SER+RE做关键信息提取任务时,对内存需求是什么要求?
The text was updated successfully, but these errors were encountered: