-
Notifications
You must be signed in to change notification settings - Fork 2.9k
/
test_lora.py
192 lines (150 loc) Β· 6.25 KB
/
test_lora.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import os
import sys
import unittest
import paddle
from parameterized import parameterized_class
from tests.testing_utils import argv_context_guard, load_test_config
from .testing_utils import LLMTest
@parameterized_class(
["model_dir"],
[
["llama"],
# ["chatglm"], @skip("Skip and wait to fix.")
# ["chatglm2"], @skip("Skip and wait to fix.")
# ["bloom"], @skip("Skip and wait to fix.")
["qwen"],
["baichuan"],
],
)
class LoraTest(LLMTest, unittest.TestCase):
config_path: str = "./tests/fixtures/llm/lora.yaml"
model_dir: str = None
def setUp(self) -> None:
LLMTest.setUp(self)
self.model_codes_dir = os.path.join(self.root_path, self.model_dir)
sys.path.insert(0, self.model_codes_dir)
def tearDown(self) -> None:
LLMTest.tearDown(self)
sys.path.remove(self.model_codes_dir)
def test_lora(self):
self.disable_static()
paddle.set_default_dtype("float32")
lora_config = load_test_config(self.config_path, "lora", self.model_dir)
lora_config["output_dir"] = self.output_dir
lora_config["dataset_name_or_path"] = self.data_dir
# use_quick_lora
lora_config["use_quick_lora"] = True
with argv_context_guard(lora_config):
from run_finetune import main
main()
# merge weights
merge_lora_weights_config = {
"lora_path": lora_config["output_dir"],
"model_name_or_path": lora_config["model_name_or_path"],
"output_path": lora_config["output_dir"],
}
with argv_context_guard(merge_lora_weights_config):
from tools.merge_lora_params import merge
merge()
# TODO(wj-Mcat): disable chatglm2 test temporarily
if self.model_dir not in ["qwen", "baichuan", "chatglm2"]:
self.run_predictor({"inference_model": True})
self.run_predictor({"inference_model": False})
def test_rslora_plus(self):
self.disable_static()
paddle.set_default_dtype("float32")
lora_config = load_test_config(self.config_path, "rslora_plus", self.model_dir)
lora_config["output_dir"] = self.output_dir
lora_config["dataset_name_or_path"] = self.data_dir
with argv_context_guard(lora_config):
from run_finetune import main
main()
# merge weights
merge_lora_weights_config = {
"lora_path": lora_config["output_dir"],
"model_name_or_path": lora_config["model_name_or_path"],
"output_path": lora_config["output_dir"],
}
with argv_context_guard(merge_lora_weights_config):
from tools.merge_lora_params import merge
merge()
# TODO(wj-Mcat): disable chatglm2 test temporarily
if self.model_dir not in ["qwen", "baichuan", "chatglm2"]:
self.run_predictor({"inference_model": True})
self.run_predictor({"inference_model": False})
# @parameterized_class(
# ["model_dir"],
# [
# ["llama"],
# ["qwen"],
# ],
# )
# class LoraChatTemplateTest(LLMTest, unittest.TestCase):
# config_path: str = "./tests/fixtures/llm/lora.yaml"
# model_dir: str = None
# def setUp(self) -> None:
# LLMTest.setUp(self)
# self.model_codes_dir = os.path.join(self.root_path, self.model_dir)
# sys.path.insert(0, self.model_codes_dir)
# self.rounds_data_dir = tempfile.mkdtemp()
# shutil.copyfile(
# os.path.join(self.data_dir, "train.json"),
# os.path.join(self.rounds_data_dir, "train.json"),
# )
# shutil.copyfile(
# os.path.join(self.data_dir, "dev.json"),
# os.path.join(self.rounds_data_dir, "dev.json"),
# )
# self.create_multi_turns_data(os.path.join(self.rounds_data_dir, "train.json"))
# self.create_multi_turns_data(os.path.join(self.rounds_data_dir, "dev.json"))
# def create_multi_turns_data(self, file: str):
# result = []
# with open(file, "r", encoding="utf-8") as f:
# for line in f:
# data = json.loads(line)
# data["src"] = [data["src"]] * 3
# data["tgt"] = [data["tgt"]] * 3
# result.append(data)
# with open(file, "w", encoding="utf-8") as f:
# for data in result:
# line = json.dumps(line)
# f.write(line + "\n")
# def tearDown(self) -> None:
# LLMTest.tearDown(self)
# sys.path.remove(self.model_codes_dir)
# def test_lora(self):
# self.disable_static()
# paddle.set_default_dtype("float32")
# lora_config = load_test_config(self.config_path, "lora", self.model_dir)
# lora_config["dataset_name_or_path"] = self.rounds_data_dir
# lora_config["chat_template"] = "./tests/fixtures/chat_template.json"
# lora_config["output_dir"] = self.output_dir
# with argv_context_guard(lora_config):
# from run_finetune import main
# main()
# # merge weights
# merge_lora_weights_config = {
# "model_name_or_path": lora_config["model_name_or_path"],
# "lora_path": lora_config["output_dir"],
# "merge_model_path": lora_config["output_dir"],
# }
# with argv_context_guard(merge_lora_weights_config):
# from tools.merge_lora_params import merge
# merge()
# if self.model_dir not in ["chatglm2", "qwen", "baichuan"]:
# self.run_predictor({"inference_model": True})
# self.run_predictor({"inference_model": False})