We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
训练picodet_l_640后使用export_model.py导出,模型大小为13M,使用deploy/python/infer.py预测视频,需要61ms每帧,使用的是GTX1650独立显卡,paddle2.1.3,与官方提供的预测速度相差很大,请问该如何提高?
The text was updated successfully, but these errors were encountered:
PicoDet是主打移动端ARM CPU。GPU的话,还是考虑PPYOLO Mbv3等模型。
Sorry, something went wrong.
使用arm cpu预测速度会比GPU快吗?为什么呢?
@lhy823436493 Nvidia GPU对depth-wise 5x5卷积支持的不是很好,PicoDet专门针对ARM、CPU开发的,后续GPU上模型我们会做进一步优化。
感谢!!
请问后面会出picodet tensorrt的部署方案吗?想在jeston nano上部署模型。@yghstill
No branches or pull requests
训练picodet_l_640后使用export_model.py导出,模型大小为13M,使用deploy/python/infer.py预测视频,需要61ms每帧,使用的是GTX1650独立显卡,paddle2.1.3,与官方提供的预测速度相差很大,请问该如何提高?
The text was updated successfully, but these errors were encountered: