Skip to content

Latest commit

 

History

History
64 lines (49 loc) · 6.45 KB

Others.md

File metadata and controls

64 lines (49 loc) · 6.45 KB

其他模型


目录

1. 概述

2012 年,Alex 等人提出的 AlexNet 网络在 ImageNet 大赛上以远超第二名的成绩夺冠,卷积神经网络乃至深度学习引起了广泛的关注。AlexNet 使用 relu 作为 CNN 的激活函数,解决了 sigmoid 在网络较深时的梯度弥散问题。训练时使用 Dropout 随机丢掉一部分神经元,避免了模型过拟合。网络中使用重叠的最大池化代替了此前 CNN 中普遍使用的平均池化,避免了平均池化的模糊效果,提升了特征的丰富性。从某种意义上说,AlexNet 引爆了神经网络的研究与应用热潮。

SqueezeNet 在 ImageNet-1k 上实现了与 AlexNet 相同的精度,但只用了 1/50 的参数量。该网络的核心是 Fire 模块,Fire 模块通过使用 1x1 的卷积实现通道降维,从而大大节省了参数量。作者通过大量堆叠 Fire 模块组成了 SqueezeNet。

VGG 由牛津大学计算机视觉组和 DeepMind 公司研究员一起研发的卷积神经网络。该网络探索了卷积神经网络的深度和其性能之间的关系,通过反复的堆叠 3x3 的小型卷积核和 2x2 的最大池化层,成功的构建了多层卷积神经网络并取得了不错的收敛精度。最终,VGG 获得了 ILSVRC 2014 比赛分类项目的亚军和定位项目的冠军。

DarkNet53 是 YOLO 作者在论文设计的用于目标检测的 backbone,该网络基本由 1x1 与 3x3 卷积构成,共 53 层,取名为 DarkNet53。

2. 精度、FLOPS 和参数量

Models Top1 Top5 Reference
top1
Reference
top5
FLOPS
(G)
Parameters
(M)
AlexNet 0.567 0.792 0.5720 1.370 61.090
SqueezeNet1_0 0.596 0.817 0.575 1.550 1.240
SqueezeNet1_1 0.601 0.819 0.690 1.230
VGG11 0.693 0.891 15.090 132.850
VGG13 0.700 0.894 22.480 133.030
VGG16 0.720 0.907 0.715 0.901 30.810 138.340
VGG19 0.726 0.909 39.130 143.650
DarkNet53 0.780 0.941 0.772 0.938 18.580 41.600

3. 基于 V100 GPU 的预测速度

Models Crop Size Resize Short Size FP32
Batch Size=1
(ms)
FP32
Batch Size=4
(ms)
FP32
Batch Size=8
(ms)
AlexNet 224 256 0.81 1.50 2.33
SqueezeNet1_0 224 256 0.68 1.64 2.62
SqueezeNet1_1 224 256 0.62 1.30 2.09
VGG11 224 256 1.72 4.15 7.24
VGG13 224 256 2.02 5.28 9.54
VGG16 224 256 2.48 6.79 12.33
VGG19 224 256 2.93 8.28 15.21
DarkNet53 256 256 2.79 6.42 10.89

基于 T4 GPU 的预测速度

Models Crop Size Resize Short Size FP16
Batch Size=1
(ms)
FP16
Batch Size=4
(ms)
FP16
Batch Size=8
(ms)
FP32
Batch Size=1
(ms)
FP32
Batch Size=4
(ms)
FP32
Batch Size=8
(ms)
AlexNet 224 256 1.06447 1.70435 2.38402 1.44993 2.46696 3.72085
SqueezeNet1_0 224 256 0.97162 2.06719 3.67499 0.96736 2.53221 4.54047
SqueezeNet1_1 224 256 0.81378 1.62919 2.68044 0.76032 1.877 3.15298
VGG11 224 256 2.24408 4.67794 7.6568 3.90412 9.51147 17.14168
VGG13 224 256 2.58589 5.82708 10.03591 4.64684 12.61558 23.70015
VGG16 224 256 3.13237 7.19257 12.50913 5.61769 16.40064 32.03939
VGG19 224 256 3.69987 8.59168 15.07866 6.65221 20.4334 41.55902
DarkNet53 256 256 3.18101 5.88419 10.14964 4.10829 12.1714 22.15266