Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions python/paddle/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -266,6 +266,7 @@
atleast_1d,
atleast_2d,
atleast_3d,
block_diag,
broadcast_tensors,
broadcast_to,
cast,
Expand Down Expand Up @@ -610,6 +611,7 @@
ir_guard._switch_to_pir()

__all__ = [
'block_diag',
'iinfo',
'finfo',
'dtype',
Expand Down
4 changes: 4 additions & 0 deletions python/paddle/nn/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -69,7 +69,9 @@
Upsample,
UpsamplingBilinear2D,
UpsamplingNearest2D,
ZeroPad1D,
ZeroPad2D,
ZeroPad3D,
)

# TODO: import all neural network related api under this directory,
Expand Down Expand Up @@ -298,4 +300,6 @@
'Unflatten',
'FractionalMaxPool2D',
'FractionalMaxPool3D',
'ZeroPad1D',
'ZeroPad3D',
]
125 changes: 125 additions & 0 deletions python/paddle/nn/layer/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -1077,6 +1077,67 @@ def extra_repr(self):
return f'padding={self._pad}, mode={self._mode}, value={self._value}, data_format={self._data_format}{name_str}'


class ZeroPad1D(Layer):
"""
This interface is used to construct a callable object of the ``ZeroPad1D`` class.
Pads the input tensor boundaries with zero.

Parameters:
padding (Tensor | List[int] | int): The padding size with data type int. If is int, use the
same padding in all dimensions. Else [len(padding)/2] dimensions of input will be padded.
The pad has the form (pad_left, pad_right).
data_format (str): An string from: "NCL", "NLC". Specify the data format of the input data.
Default is "NCL"
name (str, optional) : The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`.

Shape:
- x(Tensor): The input tensor of zeropad1d operator, which is a 3-D tensor.
The data type can be float32, float64.
- output(Tensor): The output tensor of zeropad1d operator, which is a 3-D tensor.
The data type is same as input x.

Examples:

.. code-block:: python

>>> import paddle
>>> import paddle.nn as nn

>>> input_shape = (1, 2, 3)
>>> pad = [1, 2]
>>> data = paddle.arange(paddle.prod(paddle.to_tensor(input_shape)), dtype="float32").reshape(input_shape) + 1
>>> my_pad = nn.ZeroPad1D(padding=pad)
>>> result = my_pad(data)
>>> print(result)
Tensor(shape=[1, 2, 6], dtype=float32, place=Place(cpu), stop_gradient=True,
[[[0., 1., 2., 3., 0., 0.],
[0., 4., 5., 6., 0., 0.]]])
"""

def __init__(self, padding, data_format="NCL", name=None):
super().__init__()
self._pad = _npairs(padding, 1)
self._mode = 'constant'
self._value = 0.0
self._data_format = data_format
self._name = name

def forward(self, x):
return F.pad(
x,
pad=self._pad,
mode=self._mode,
value=self._value,
data_format=self._data_format,
name=self._name,
)

def extra_repr(self):
name_str = f', name={self._name}' if self._name else ''
return f'padding={self._pad}, data_format={self._data_format}{name_str}'


class Pad2D(Layer):
"""
This interface is used to construct a callable object of the ``Pad2D`` class.
Expand Down Expand Up @@ -1290,6 +1351,70 @@ def extra_repr(self):
return f'padding={self._pad}, mode={self._mode}, value={self._value}, data_format={self._data_format}{name_str}'


class ZeroPad3D(Layer):
"""
This interface is used to construct a callable object of the ``ZeroPad3D`` class.
Pads the input tensor boundaries with zero.

Parameters:
padding (Tensor | List[int] | int): The padding size with data type int. If is int, use the
same padding in all dimensions. Else [len(padding)/2] dimensions of input will be padded.
The pad has the form (pad_left, pad_right, pad_top, pad_bottom, pad_front, pad_back).
data_format (str): An string from: "NCDHW", "NDHWC". Specify the data format of the input data.
Default is "NCDHW"
name (str, optional) : The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`.

Shape:
- x(Tensor): The input tensor of zeropad3d operator, which is a 5-D tensor.
The data type can be float32, float64.
- output(Tensor): The output tensor of zeropad3d operator, which is a 5-D tensor.
The data type is same as input x.

Examples:

.. code-block:: python

>>> import paddle
>>> import paddle.nn as nn

>>> input_shape = (1, 1, 1, 2, 3)
>>> pad = [1, 0, 1, 2, 0, 0]
>>> data = paddle.arange(paddle.prod(paddle.to_tensor(input_shape)), dtype="float32").reshape(input_shape) + 1
>>> my_pad = nn.ZeroPad3D(padding=pad)
>>> result = my_pad(data)
>>> print(result)
Tensor(shape=[1, 1, 1, 5, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
[[[[[0., 0., 0., 0.],
[0., 1., 2., 3.],
[0., 4., 5., 6.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]]]]])
"""

def __init__(self, padding, data_format="NCDHW", name=None):
super().__init__()
self._pad = _npairs(padding, 3)
self._mode = 'constant'
self._value = 0.0
self._data_format = data_format
self._name = name

def forward(self, x):
return F.pad(
x,
pad=self._pad,
mode=self._mode,
value=self._value,
data_format=self._data_format,
name=self._name,
)

def extra_repr(self):
name_str = f', name={self._name}' if self._name else ''
return f'padding={self._pad}, data_format={self._data_format}{name_str}'


class CosineSimilarity(Layer):
"""
This interface is used to compute cosine similarity between x1 and x2 along axis.
Expand Down
2 changes: 2 additions & 0 deletions python/paddle/tensor/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -142,6 +142,7 @@
atleast_1d,
atleast_2d,
atleast_3d,
block_diag,
broadcast_tensors,
broadcast_to,
cast,
Expand Down Expand Up @@ -543,6 +544,7 @@
'hypot_',
'nansum',
'nanmean',
'block_diag',
'count_nonzero',
'tanh',
'tanh_',
Expand Down
64 changes: 64 additions & 0 deletions python/paddle/tensor/manipulation.py
Original file line number Diff line number Diff line change
Expand Up @@ -6861,3 +6861,67 @@ def slice_scatter(x, value, axes, starts, ends, strides, name=None):
)

return output


def block_diag(inputs, name=None):
"""
Create a block diagonal matrix from provided tensors.

Args:
inputs (list|tuple): ``inputs`` is a Tensor list or Tensor tuple, one or more tensors with 0, 1, or 2 dimensions.
name (str, optional): Name for the operation (optional, default is None).

Returns:
Tensor, A ``Tensor``. The data type is same as ``inputs``.

Examples:
.. code-block:: python

>>> import paddle

>>> A = paddle.to_tensor([[4], [3], [2]])
>>> B = paddle.to_tensor([7, 6, 5])
>>> C = paddle.to_tensor(1)
>>> D = paddle.to_tensor([[5, 4, 3], [2, 1, 0]])
>>> E = paddle.to_tensor([[8, 7], [7, 8]])
>>> out = paddle.block_diag([A, B, C, D, E])
>>> print(out)
Tensor(shape=[9, 10], dtype=int64, place=Place(gpu:0), stop_gradient=True,
[[4, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[3, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[2, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 7, 6, 5, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 5, 4, 3, 0, 0],
[0, 0, 0, 0, 0, 2, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 8, 7],
[0, 0, 0, 0, 0, 0, 0, 0, 7, 8]])
"""

def to_col_block(arys, i, a):
return [
a
if idx == i
else paddle.zeros([ary.shape[0], a.shape[1]], dtype=a.dtype)
for idx, ary in enumerate(arys)
]

def to_2d(ary):
if ary.ndim == 0:
return ary.unsqueeze(axis=0).unsqueeze(axis=0)
if ary.ndim == 1:
return ary.unsqueeze(axis=0)
if ary.ndim == 2:
return ary
raise ValueError(
"For 'block_diag', the dimension of each elements in 'inputs' must be 0, 1, or 2, but got "
f"{ary.ndim}"
)

arys = [to_2d(ary) for ary in inputs]

matrix = [
paddle.concat(to_col_block(arys, idx, ary), axis=0)
for idx, ary in enumerate(arys)
]
return paddle.concat(matrix, axis=1)
90 changes: 90 additions & 0 deletions test/legacy_test/test_ZeroPad1d.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,90 @@
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import numpy as np

import paddle
from paddle import to_tensor
from paddle.nn import ZeroPad1D


class TestZeroPad1dAPI(unittest.TestCase):
def setUp(self):
if paddle.is_compiled_with_cuda():
paddle.device.set_device('gpu:0')
else:
paddle.device.set_device('cpu')
self.shape = [4, 6, 6]
self.support_dtypes = ['float32', 'float64', 'int32', 'int64']

def test_support_dtypes(self):
for dtype in self.support_dtypes:
pad = 2
x = np.random.randint(-255, 255, size=self.shape).astype(dtype)
expect_res = np.pad(
x,
[[0, 0], [0, 0], [pad, pad]],
mode='constant',
constant_values=0,
)

x_tensor = to_tensor(x).astype(dtype)
zeropad1d = ZeroPad1D(padding=pad)
ret_res = zeropad1d(x_tensor).numpy()
np.testing.assert_allclose(expect_res, ret_res, rtol=1e-05)

def test_support_pad2(self):
pad = [1, 2]
x = np.random.randint(-255, 255, size=self.shape)
expect_res = np.pad(
x, [[0, 0], [0, 0], pad], mode='constant', constant_values=0
)

x_tensor = to_tensor(x)
zeropad1d = ZeroPad1D(padding=pad)
ret_res = zeropad1d(x_tensor).numpy()
np.testing.assert_allclose(expect_res, ret_res, rtol=1e-05)

def test_support_pad3(self):
pad = (1, 2)
x = np.random.randint(-255, 255, size=self.shape)
expect_res = np.pad(x, [[0, 0], [0, 0], [pad[0], pad[1]]])

x_tensor = to_tensor(x)
zeropad1d = ZeroPad1D(padding=pad)
ret_res = zeropad1d(x_tensor).numpy()
np.testing.assert_allclose(expect_res, ret_res, rtol=1e-05)

def test_support_pad4(self):
pad = [1, 2]
x = np.random.randint(-255, 255, size=self.shape)
expect_res = np.pad(x, [[0, 0], [0, 0], [pad[0], pad[1]]])

x_tensor = to_tensor(x)
pad_tensor = to_tensor(pad, dtype='int32')
zeropad1d = ZeroPad1D(padding=pad_tensor)
ret_res = zeropad1d(x_tensor).numpy()
np.testing.assert_allclose(expect_res, ret_res, rtol=1e-05)

def test_repr(self):
pad = [1, 2]
zeropad1d = ZeroPad1D(padding=pad)
name_str = zeropad1d.extra_repr()
assert name_str == 'padding=[1, 2], data_format=NCL'


if __name__ == '__main__':
unittest.main()
Loading